A Comparative Study on Recycled Glass Fibers and Milled Glass Fibers as Reinforcement Fibers in Polypropylene

Article Preview

Abstract:

Fibers reinforced polymers have received considerable attention from industry in recent years. Due to the sharp resources recovery, and the global demand for fiber materials, there has been growing interest in the use of the recycled glass fibers (RGF) as an alternative. This work focuses on comparing the RGF from nonmetals of waste printed circuit boards (PCBs) and virgin milled glass fibers (MGF) as reinforcement fibers in polypropylene (PP). The results show that toughness, strength, and rigidity of the composites can be improved simultaneously by the addition the RGF into PP. Meanwhile, the effect of the RGF on PP matrix is slightly higher than that of the MGF. The morphology, evaluated by scanning electron microscopy (SEM), indicates uniform dispersion of both types of the fibers in the PP matrix. Based on comprehensive consideration of the mechanical properties, thermal properties, economy and environment, the RGF could replace traditional MGF for producing PP plastic products and can bring a good economic benefit to enterprises. This would develop a new technique for meeting the demand of the glass fiber materials and resolving the environmental pollution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

2625-2628

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. M. Zebarjad, R. Bagheri, A. Lazzeri and S. Serajzadeh: Mater Des Vol. 24(2003), p.105.

Google Scholar

[2] S. M. Zebarjad, M. Tahani and S. A. Sajjadi: J Mater Process Technol Vol. 155-156(2004), p.1459.

Google Scholar

[3] J. Himani and J. Purnima: Mater Sci Eng A Vol. 527(2010), p. (1946).

Google Scholar

[4] C. L. Morelli, A. S. Pouzada, and J. A. Sousa: J Appl Polym Sci Vol. 114(2009), p.3592.

Google Scholar

[5] S. T. Georgopoulos, P. A. Tarantili, E. Avgerinos, A.G. Andreopoulos, and E.G. Koukios: Polym Degrad Stabil Vol. 90 (2005), p.303.

Google Scholar

[6] A. Ashori and A. Nourbakhsh, Polym Compos Vol. 29 (2008), p.574.

Google Scholar

[7] M. S. Huda, L. T. Drzal, A. K. Mohanty and M. Misra: Compos Sci Technol Vol. 66(2006), p.1813.

Google Scholar

[8] S. K. Nayak, S. Mohanty and S. K. Samal: Mater Sci Eng A Vol. 523(2009), p.32.

Google Scholar

[9] M. Biswal, S. Mohanty and S. K. Nayak: J Appl Polym Sci Vol. 114 (2009), p.4091.

Google Scholar

[10] M. Tajvidi, N. Motie, G. Rassam, R. H. Falk and C. Felton: J Reinf Plast Compos Vol. 29(2010), p.664.

Google Scholar

[11] M. Robert, R. Roy and B. Benmokrane: Polym Compos Vol. 31(2010), p.604.

Google Scholar

[12] H. Zhang, W. Li, X. Yang, Y. Zhang and Y. Chen: J Mater Process Technol Vol. 190(2007), p.96.

Google Scholar

[13] H. Zhang, W. Li, X. Yang, L. Lu, X. Wang, X. Sun and Y. Zhang: Mater Lett Vol. 61 (2007), 1358.

Google Scholar

[14] Information on http: /www. grid. unep. ch/product/publication/EABs. php.

Google Scholar

[15] J. Guo, Q. Rao and Z. Xu: J Hazard Mater Vol. 153(2008), p.728.

Google Scholar

[16] J. Guo and Xu, Z. J Hazard Mater Vol. 168(2009), p.567.

Google Scholar

[17] Y. Zheng, Z. Shen, S. Ma, C. Cai, X. Zhao and Y. Xing, J Hazard Mater Vol. 170(2009), p.978.

Google Scholar

[18] Y. Zheng, Z. Shen, S. Ma, C. Cai, X. Zhao and Y. Xing, B. Guo, X. Zeng and L. Wang: J Appl Polym Sci Vol. 118 (2010), p.2914.

Google Scholar