Interaction Effects of Polyacrylamide Application Rate, Molecular Weight, and Slope Gradient on Runoff and Soil Loss under Sprinkler Irrigation

Article Preview

Abstract:

Runoff and soil loss affect both farmland productivity and environmental quality. This study tested the interaction effects among polyacrylamide (PAM) application rate, PAM molecular weight, and slope gradient on runoff and soil loss under simulated sprinkler irrigation in laboratory. Experimental treatments consisted of four PAM application rates of 0 (control), 0.5, 1.0, and 2.0 g m-2, two PAM molecular weights of 12 and 18 Mg mol-1, and three slope gradients of 5o, 15o, and 25o. Results indicated that compared with the control treatment, PAM application generally decreased total runoff volume but increased soil loss. Total runoff volume and soil loss increased with the increased PAM application rate. Under control treatment, total runoff volume increased with the increased slope gradient. However, total runoff volume was similar for different slope gradients when PAM application rates were 0.5 and 1.0 g m-2, but it decreased with the increased slope gradient when PAM application rate was 2.0 g m-2. Total soil loss increased with the increase of slope gradient under experimental conditions. Polyacrylamide molecular weight did not affect total runoff volume but did soil loss significantly at P < 0.001, and a high PAM molecular weight resulted in less soil loss than a low one did. Statistical analysis demonstrated that there existed a significant interaction effect at P < 0.001 between PAM application rate and soil slope gradient on runoff volume and soil loss. The interaction effects between PAM molecular weight and slope gradient or among PAM application rate, PAM molecular weight, and slope gradient on soil loss were also significant at P < 0.01. A PAM application rate less than 2 g m-2 is suggested to control water and soil loss on sloped lands under sprinkler irrigation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

3489-3498

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.J. Levy, M. Ben-Hur and M. Agassi: Irrig. Sci. 12 (1991) 55-60.

Google Scholar

[2] S.S. Lee, C.J. Gantzer, A.L. Thompson and S.H. Anderson: J. Soil Water Conserv. 66 (2011) 172-177.

Google Scholar

[3] M. Abu-Zreig: J. Soils Sediments 6 (2006) 137-144.

Google Scholar

[4] M. Ben-Hur: Aust. J. Soil Res. 44 (2006) 191-204.

Google Scholar

[5] D.T. Gardiner, Q.G. Sun: J. Am. Water Resour. Assoc. 38 (2002) 1061-1067.

Google Scholar

[6] N. Al-Abed, J. Amayreh, E. Shudifat, L. Qaqish and G. El-Mehaisin: Arch. Agron. Soil Sci. 49 (2003) 301-308.

DOI: 10.1080/0365034031000148327

Google Scholar

[7] F.L. Santos, R.P. Serralheiro: J. Agr. Eng. Res. 76 (2000) 83-90.

Google Scholar

[8] D.C. Flanagan, K. Chaudhari and L.D. Norton: Trans. ASAE. 45 (2002) 1327-1337.

Google Scholar

[9] D.C. Flanagan, L.D. Norton, J.R. Peterson and K. Chaudhari: J. Soil Water Conserv. 58 (2003) 301-311.

Google Scholar

[10] M. Abu-Zreig: Arch. Agron. Soil Sci. 52 (2006) 289-298.

Google Scholar

[11] J.K. Mitchell, C. Ray, G.E. McIsaac and J.G. O'Brien, in: Managing Irrigation-Induced Erosion and Infiltration with Polyacrylamide, edited by R.E. Sojka and R.D. Lentz, University of Idaho Mish. Pub. No. 101-96, Twin Falls, Idaho (1996), 63-70.

Google Scholar

[12] S.A. Hayes, R.A. McLaughlin and D.L. Osmond: J. Soil Water Conserv. 60 (2005) 193-199.

Google Scholar

[13] A. Akbarzadeh, R.T. Mehrjardi, H.G. Refahi, H. Rouhipour and M. Gorji: Int. Agrophysics 23 (2009) 99-109.

Google Scholar

[14] R.E. Sojka, D.L. Bjorneberg, J.A. Entry, R.D. Lentz and W.J. Orts: Adv. Agron. 92 (2007) 75-162.

Google Scholar

[15] D. Sirjacobs, I. Shainberg, I. Rapp and G.J. Levy: Soil Sci. Soc. Am. J. 64 (2000) 1487-1495.

DOI: 10.2136/sssaj2000.6441487x

Google Scholar

[16] A.K. Bhardwaj, R.A. McLaughlin and G.J. Levy: J. Soils Sediments 10 (2010) 494-504.

Google Scholar

[17] M.H. Young, E.A. Moran, Z.B. Yu, J.T. Zhu and D.M. Smith: Soil Sci. Soc. Am. J. 73 (2009) 13-20.

Google Scholar

[18] H.A. Ajwa, T.J. Trout: Soil Sci. Soc. Am. J. 70 (2006) 643-650.

Google Scholar

[19] M.L. Soupir, S. Mostaghimi, A. Masters, K.A. Flahive, D.H. Vaughan, A. Mendez and P.W. McClellan: J. Am. Water Resour. Assoc. 40 (2004) 53-66.

DOI: 10.1111/j.1752-1688.2004.tb01009.x

Google Scholar

[20] B.H.W. Cochrane, J.M. Reichert, F.L.F. Eltz and L.D. Norton: Trans. ASAE 48 (2005) 149-154.

Google Scholar

[21] F.H. Li, L.J. Zhang: Pedosphere 20 (2010) 35-42.

Google Scholar

[22] A.R. Sepaskhah, Z. Mahdi-Hosseinabadi: Biosyst. Eng. 99 (2008) 598-603.

Google Scholar

[23] W.J. Busscher, J.M. Novak and T.C. Caesar-TonThat: Soil Till. Res. 93 (2007) 171-178.

Google Scholar

[24] V.S. Green, D.E. Stott, J.G. Graveel and L.D. Norton: Soil Sci. 169 (2004) 573-581.

Google Scholar

[25] A.I. Mamedov, S. Beckmann, C. Huang and G.J. Levy: Soil Sci. Soc. Am. J. 71 (2007) 1909-(1918).

Google Scholar

[26] R.E. Sojka, R.D. Lentz and D.T. Westermann: Soil Sci. Soc. Am. J. 62 (1998) 1672-1680.

Google Scholar

[27] R.E. Sojka, R.D. Lentz: J. Prod. Agric. 10 (1997) 47-52.

Google Scholar

[28] D.C. Flanagan, L.D. Norton and I. Shainberg: Trans. ASAE 40 (1997) 1555-1561.

Google Scholar

[29] A.P. Wang, F.H. Li and S.M. Yang: Pedosphere 21 (2011) 628-638.

Google Scholar

[30] V.A.M. Chaplot, Y.L. Bissonnais: Soil Sci. Soc. Am. J. 67 (2003) 844-851.

Google Scholar

[31] A.R. Sepaskhah, A.R. Bazrafshan-Jahromi: Biosyst. Eng. 93 (2006) 469-474.

Google Scholar

[32] V.S. Green, D.E. Stott, L.D. Norton and J.G. Graveel: Soil Sci. Soc. Am. J. 64 (2000) 1786-1791.

Google Scholar

[33] G.J. Levy, M. Agassi: Aust. J. Soil Res. 33 (1995) 1007-1018.

Google Scholar

[34] R.A. McLaughlin, N. Bartholomew: Soil Sci. Soc. Am. J. 71 (2007) 537-544.

Google Scholar

[35] A.I. Mamedov, I. Shainberg, L.E. Wagner, D.N. Warrington and G.J. Levy: Aust. J. Soil Res. 47 (2009) 788-795.

Google Scholar

[36] R.E. Sojka, R.D. Lentz, I. Shainberg, T.J. Trout, C.W. Ross, C.W. Robbins, J.A. Entry, J.K. Aase, D.L. Bjorneberg, W.J. Orts, D.T. Westermann, D.W. Morishita, M.E. Watwood, T.L. Spofford and F.W. Barvenik, in: Proceedings of the 4th Decennial Symposium, edited by R.G. Evans, B.L. Benham and T.P. Trooien, National Irrigation Symposium, American Society of Agricultural Engineers, Phoenix, Arizona (2000).

Google Scholar

[37] C.A. Murphy, A.L. Thompson and C.J. Gantzer: Trans. ASABE 53 (2010) 31-38.

Google Scholar

[38] A.I.J.M. van Dijk, L.A. Bruijnzeel and C.J. Rosewell: J. Hydrol. 261 (2002) 1-23.

Google Scholar

[39] R.L. Fornis, H.R. Vermeulen and J.D. Nieuwenhuis: J. Hydrol. 300 (2005) 20-32.

Google Scholar

[40] F.H. Li, S.M. Yang and C. Peng: Soil Sci. Soc. Am. J. 74 (2010) 461-468.

Google Scholar

[41] S.S. Lee, C.J. Gantzer, A.L. Thompson and S.H. Anderson: J. Soil Water Conserv. 65 (2010) 233-242.

Google Scholar

[42] V. Abrol, I. Shainberg, M. Lado and M. Ben-Hur: Eur. J. Soil Sci. 64 (2013) 699-705.

DOI: 10.1111/ejss.12076

Google Scholar

[43] A.R. Sepaskhah, V. Shahabizad: Biosyst. Eng. 106 (2010) 513-520.

Google Scholar

[44] X. Hu, L.Y. Liu, S.J. Li, Q.G. Cai, Y.L. Lü and J.R. Guo: Pedosphere 22 (2012) 415-424.

Google Scholar

[45] Y. Li, M.A. Shao and R. Horton: Procedia Environ. Sci. 11 (2011) 763-773.

Google Scholar

[46] I. Shainberg, D.N. Warrington and P. Rengasamy: Soil Sci. 149 (1990) 301-307.

Google Scholar