Study of Adsorption of Cu2+ and Ni2+ from Aqueous Solutions Using β-Cyclodextrin Modified Zeolites

Article Preview

Abstract:

Adsorption of Cu2+ and Ni2+ from aqueous solution on CCDMZ was investigated. The adsorption capacity of Cu2+ and Ni2+ on CCDMZ was found to have a much higher enhance than that of NZ and to be obviously influenced by contact time, initial concentration and pH. The kinetic studies showed that the adsorption processes of Cu2+ and Ni2+ on CCDMZ were complex, including chemical adsorption and physical adsorption. The adsorption followed the pseudo-second-order model, which suggested that the rate-limiting step might be mainly chemisorption.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

3509-3513

Citation:

Online since:

June 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. A. Barakat: Res. J. Environ. Sci. Vol. 2 (1) (2008), p.13.

Google Scholar

[2] W. H. Zou, R. P. Han, Z. Z. Chen, J. H. Zhang: Colloids Surf., A: Physicochem. Eng. Aspects. Vol. 279 (2006), p.238.

Google Scholar

[3] S. B. Wang, Y. L. Peng: Chem. Eng. J. Vol. 156 (2010), p.11.

Google Scholar

[4] M. G. Fonseca, M. M. Oliveira, L.N.H. Arakaki: Hazard. Mater. Vol. B(137) (2006), p.288.

Google Scholar

[5] V. Jovanovic, V. Dondur, L. Damjanovic: Mater. Sci. Forum. Vol. 518 (2006), p.223.

Google Scholar

[6] N. Eugenijus, G. Giedre, V. Tapani, B. Eugenijus, V. Rimantas: Supramol. Chem. Vol. 15(6) (2003) p.425.

Google Scholar

[7] H. Csilla, F. Eva, G. Katalin:J. Inclusion Phenom. Macro. Chem. Vol. 70 (3/4) (2011), p.307.

Google Scholar

[8] E. M. Martin Del Valle: Process Biochem. Vol. 39 (9) (2004), p.1033.

Google Scholar

[9] X. H. Li, K. Zhu, X. K. Hao: Water Sci. Technol. Vol. 60 (2) (2009), p.329.

Google Scholar

[10] W. D. Woggon: Curr. Org. Chem. Vol. 14 (13) (2010), p.1362.

Google Scholar

[11] W. Ciesielski, T. Girek: J. Inclusion Phenom. Macro. Chem. Vol. 69 (3/4) (2011), p.461.

Google Scholar

[12] N. Eugenijus, G. Giedre, V. Tapani, B. Eugenijus, V. Rimantas: Supramol. Chem. Vol. 15 (6) (2003), p.425.

Google Scholar

[13] N. Eugenijus: J. Inclusion Phenom. Macro. Chem. Vol. 65 (2009), p.237.

Google Scholar

[14] G. Crini, H. N. Peindy, F. Gimbert, C. Robert: Sep. Purif. Technol. Vol. 53 (2007), p.97.

Google Scholar

[15] A. Gucek, S. Sener, S. Bilgen, M. A. Mazmanci: J. Colloid Interface Sci. Vol. 286 (2005), p.53.

Google Scholar

[16] S. Malamis, E. Katsou: Hazard. Mater. Vol. 252/253 (2013), p.428.

Google Scholar

[17] M. A. Barakat: Res. J. Environ. Sci. , Vol. 2 (1) (2008), p.13.

Google Scholar