Precipitation Estimation at the Site of Transmission Tower Using Geographic Information System

Article Preview

Abstract:

A method calculating the precipitation at the site of every transmission tower based on the precipitation estimation data is proposed. An inverse-distance weighting (IDW) method is modified for spatial interpolation of the precipitation data received from Central Weather Bureau. Accuracy and computational speed are both put into consideration in the design of the proposed approach because vast amount of transmission towers is required to process at a time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

3869-3874

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Beehler, M. E. Reliability Centered Maintenance for Transmission Systems. IEEE Trans. Power Delivery 1997, 12, 1023-1028.

DOI: 10.1109/61.584432

Google Scholar

[2] Keefer, D. K. Landslides Caused by Earthquakes. Geol. Soc. Amer. Bull. 1984, 95, 406-421.

DOI: 10.1130/0016-7606(1984)95<406:lcbe>2.0.co;2

Google Scholar

[3] Fernandez, C. I.; Castillo, T. F.; Hamdouni, R. E.; Momtero, J. C. Verification of Landslide Susceptibility Mapping: A Case Study. Earth Surface Processes and Landforms 1999, 24, 537-544.

DOI: 10.1002/(sici)1096-9837(199906)24:6<537::aid-esp965>3.0.co;2-6

Google Scholar

[4] Iverson, R. M. Landslide triggering by rain infiltration. Water Resources Research 2000, 36, 1897–(1910).

DOI: 10.1029/2000wr900090

Google Scholar

[5] Keefer, D. K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geology 1994, 10, 265–284.

DOI: 10.1016/b978-0-444-82012-9.50022-0

Google Scholar

[6] Dadson, S.; Hovius, N.; Chen, H.; B. Dade, W.; Lin, J. C.; Hsu, M. L.; Lin, C. W.; Horng, M. J.; Chen, T. C.; Miliman, J.; Stark, C. P. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 2004, 32, 373–376.

DOI: 10.1130/g20639.1

Google Scholar

[7] Popescu, M. E. Landslide Causal Factors and Landslide Remedial Options. In Proceeding of the 3rd Landslides, Slope Stability and Safety of InfraStructures International Conference, Singapore, 61-81, (2002).

Google Scholar

[8] Chen, C.; Lin, L.; Yu, F.; Lee, C.; Tseng, C.; Wang, A.; Cheung, K. Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS. Natural Hazards 2007, 40, 447-461.

DOI: 10.1007/s11069-006-9004-2

Google Scholar

[9] Hevesi, J. A.; Flint, A. L.; Istok, J. D. Precipitation estimation in mountainous terrain using multivariate geostatistics Part I: structural analysis. Applied Meteorology 1992, 31, 661–676.

DOI: 10.1175/1520-0450(1992)031<0661:peimtu>2.0.co;2

Google Scholar

[10] Hevesi, J. A.; Flint, A. L.; Istok, J. D. Precipitation estimation in mountainous terrain using multivariate geostatistics Part II: Isohyetal maps. Applied Meteorology 1992, 31, 677–688.

DOI: 10.1175/1520-0450(1992)031<0677:peimtu>2.0.co;2

Google Scholar

[11] Koukis, G.; Ziourkas, C. Slope instability phenomena in Greece: A statistical analysis. Bull. Int. Assoc. Eng. Geol. 1991, 43, 47-60.

DOI: 10.1007/bf02590170

Google Scholar

[12] Yao, L. et. al. Transmission Facility Maintenance and Management System, Research Report in Taiwan Power Company, Taiwan, (2012).

Google Scholar

[13] Bartier, P. M.; Keller, C. P. Multivariate Interpolation to Incorporate Thematic Surface Data Using Inverse Distance Weighting (IDW). Computers & Geosciences 1996, 22, 795-799.

DOI: 10.1016/0098-3004(96)00021-0

Google Scholar

[14] Berman, O.; Krass, D. Flow Intercepting Spatial Interaction Model: A New Approach to Optimal Location of Competitive Facilities. Location Science 1998, 6, 41-65.

DOI: 10.1016/s0966-8349(98)00047-3

Google Scholar