Future Extreme Climates Projection over Huang-Huai-Hai Region of China

Article Preview

Abstract:

This study projects the future extreme climate changes over Huang-Huai-Hai (3H) region in China using a regional climate model (RegCM4). The RegCM4 performs well in “current” climate (1970-1999) simulations by compared with the available surface station data, focusing on near-surface air temperature and precipitation. Future climate changes are evaluated based on experiments driven by European-Hamburg general climate model (ECHAM5) in A1B future scenario (2070-2099). The results show that the annual temperature increase about 3.4 °C-4.2 °C and the annual precipitation increase about 5-15% in most of 3H region at the end of 21st century. The model predicts a generally less frost days, longer growing season, more hot days, no obvious change in heat wave duration index, larger maximum five-day rainfall, more heavy rain days, and larger daily rainfall intensity. The results indicate a higher risk of floods in the future warmer climate. In addition, the consecutive dry days in Huai River Basin will increase, indicating more serve drought and floods conditions in this region.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

3887-3892

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Easterling, G.A. Meehl, C. Parmesan, S.A. Changnon, T.R. Karl, and L.O. Mearns, Climate Extremes: Observations, Modeling, and Impacts. Science 289 (2000) 2068-(2074).

DOI: 10.1126/science.289.5487.2068

Google Scholar

[2] X. Mo, S. Liu, and Z. Lin, Spatial-temporal evolution and driving forces of winter wheat productivity in the Huang-Huai-Hai region. Journal of Natural Resources 21 (2006) 449-457 (in Chinese).

Google Scholar

[3] S. Liu, X. Mo, Z. Lin, Y. Xu, J. Ji, G. Wen, and J. Richey, Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agricultural Water Management 97 (2010) 1195-1209.

DOI: 10.1016/j.agwat.2010.03.001

Google Scholar

[4] W. Shi, F. Tao, and J. Liu, Regional temperature change over the Huang-Huai-Hai Plain of China: the roles of irrigation versus urbanization. International Journal of Climatology (2013) n/a-n/a.

DOI: 10.1002/joc.3755

Google Scholar

[5] D. Kiktev, D.M.H. Sexton, L. Alexander, and C.K. Folland, Comparison of modeled and observed trends in indices of daily climate extremes. Journal of Climate 16 (2003) 3560-3571.

DOI: 10.1175/1520-0442(2003)016<3560:comaot>2.0.co;2

Google Scholar

[6] H.J. Fowler, and C.G. Kilsby, Using regional climate model data to simulate historical and future river flows in northwest England. Climatic Change 80 (2007) 337-367.

DOI: 10.1007/s10584-006-9117-3

Google Scholar

[7] K.C. Mo, J.K. Schemm, H.M.H. Juang, R.W. Higgins, and Y. Song, Impact of model resolution on the prediction of summer precipitation over the United States and Mexico. Journal of Climate 18 (2005) 3910-3927.

DOI: 10.1175/jcli3513.1

Google Scholar

[8] H. Gu, G. Wang, Z. Yu, and R. Mei, Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model. Climatic Change 114 (2012) 301-317.

DOI: 10.1007/s10584-012-0411-y

Google Scholar

[9] F. Giorgi, E. Coppola, F. Solmon, L. Mariotti, M.B. Sylla, X. Bi, N. Elguindi, G.T. Diro, V. Nair, G. Giuliani, U.U. Turuncoglu, S. Cozzini, I. Güttler, T.A. O Brien, A.B. Tawfik, A. Shalaby, A.S. Zakey, A.L. Steiner, F. Stordal, L.C. Sloan, and C. Brankovic, RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research 52 (2012).

DOI: 10.3354/cr01018

Google Scholar

[10] M. Kanamistu, W. Ebisuzaki, J. Woollen, S.K. Yarg, J.J. Hnilo, M. Fiorino, and G.L. Potter, NCEP-DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society 83 (2002) 1631-1643.

DOI: 10.1175/bams-83-11-1631(2002)083<1631:nar>2.3.co;2

Google Scholar

[11] E. Roeckner, G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, and A. Tompkins, The atmospheric general circulation model ECHAM5. Part 1: Model description, Max-Planck-Institute for Meteorology, Hamburg, (2003).

DOI: 10.1175/jcli3824.1

Google Scholar

[12] P. Frich, L.V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A.M.G. Klein Tank, and T.C. Peterson, Observed coherent changes in climatic extremes during the second half of the twentieth cnetury. Climate Research 19 (2002) 193-212.

DOI: 10.3354/cr019193

Google Scholar

[13] J. Bartholy, and R. Pongracz, Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Global And Planetary Change 57 (2007) 83-95.

DOI: 10.1016/j.gloplacha.2006.11.002

Google Scholar

[14] Y. Hu, S. Maskey, and S. Uhlenbrook, Downscaling daily precipitation over the Yellow River source region in China: a comparison of three statistical downscaling methods. Theoretical and Applied Climatology 112 (2013) 447-460.

DOI: 10.1007/s00704-012-0745-4

Google Scholar

[15] K.E. Trenberth, A. Dai, R.M. Rasmussen, and D.B. Parsons, The changing character of precipitation. Bulletin of the American Mathematical Society 84 (2003) 1205-1217.

DOI: 10.1175/bams-84-9-1205

Google Scholar

[16] X. Gao, Y. Shi, D. Zhang, J. Wu, F. Giorgi, Z. Ji, and Y. Wang, Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations. Climate Research 52 (2012) 213-226.

DOI: 10.3354/cr01084

Google Scholar