Manufacture and Experimental Investigation of a Multi-Layer Generator Based on Dielectric Elastomer

Article Preview

Abstract:

As a member of Electroactive Polymers (EAPs), dielectric elastomer (DE) has shown considerable potential for energy harvesting applications. After the basic principle of DE energy harvesting is studied, a multi-layer DE generator using VHB 4910 (3M, USA) is specially designed and fabricated. Then, an improved energy harvesting circuit is designed to make use of harvested electrical energy. Finally, energy harvesting experiments are implemented under the constant charge (open-circuit) condition and the results prove that the multi-layer DE generator fabricated can produce enough energy to constantly drive a light emitting diode. The harvested electrical energy has good consistent with generated electrical energy and the maximum energy harvesting efficiency ηh can reach 89%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 960-961)

Pages:

1336-1341

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R Pelrine, R Kornbluh, Q Pei and J Joseph. High-Speed Electrically Actuated Elastomers with Strain Greater Than 100% [J]. Science, 287: 836-839 (2000).

DOI: 10.1126/science.287.5454.836

Google Scholar

[2] Y. Bar-Cohen, Electroactive polymer (EAP) actuator as artificial muscles, SPIE publication, Washington ( 2001).

Google Scholar

[3] B Chu, X Zhou, K Ren, et al. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed [J]. Science, 313(5785): 334-336 (2006).

DOI: 10.1126/science.1127798

Google Scholar

[4] Pelrine, R., Kornbluh, R., Eckerle, J., Jeuck, P., Oh, S. J., Pei, Q. B., and Stanford, S., Dielectric elastomers: Generator mode fundamentals and applications, P Soc Photo-Opt Ins, 4329, 148-156 (2001).

DOI: 10.1117/12.432640

Google Scholar

[5] Chiba, S. Waki, M., Masuda, K., and Ikoma, T., Current Status and Future Prospects of Electric Generators Using Electroactive Polymer Artificial Muscle, eds., Sydney, NSW, Australia (2010).

DOI: 10.1109/oceanssyd.2010.5603972

Google Scholar

[6] Pelrine, R., Kornbluh, R., Eckerle, J., Jeuck, P., Oh, S., Pei, Q. and Stanford, S., Dielectric Elastomers: Generator Mode Fundamentals and Applications, Proc. SPIE 4329, pp.148-156 (2001).

DOI: 10.1117/12.432640

Google Scholar

[7] Anderson, I. A., Mckay, T., O'brien, B., and Melhuish, C., Power for Robotic Artificial Muscles, IEEE/ASME Transactions on Mechatronics, 16(Compendex), pp.107-111(2011).

DOI: 10.1109/tmech.2010.2090894

Google Scholar

[8] Kornbluh RD, Pelrine R, Prahlad H, et al., From boots to buoys: promises and challenges of dielectric elastomer energy harvesting. In: Electroactive polymer actuators and devices (EAPAD), Proc. SPIE 7976, 797605(2011).

DOI: 10.1117/12.882367

Google Scholar

[9] Jean-Mistral, C., Basrour, S. and Chaillout, J. -J., Dielectric polymer: scavenging energy from human motion, Proc. SPIE 6927, 692716 (2008).

DOI: 10.1117/12.776879

Google Scholar

[10] Koh, S. A., Zhao, X. H., Suo, Z. G., Maximal energy that can be converted by a dielectric elastomer generator, Appl. Phys. Lett. 94, 262902 (2009).

DOI: 10.1063/1.3167773

Google Scholar

[11] McKay, T. G., O'Brien, B. M., Calius, E. P. and Anderson I. A., Self-Priming dielectric elastomer generator design", Proc. SPIE, 8340, 83401Y (2012).

DOI: 10.1117/12.915464

Google Scholar