Rheological Properties of Sodium Metatungstate in Aqueous Solutions

Article Preview

Abstract:

Sodium metatungstate (SMT) solution is an inorganic heavy liquid which is widely used in density fractionation. However, rheological properties of aqueous SMT solutions have never been fully researched. The objective of the present work was to study the rheological properties of aqueous SMT solutions and effects of temperature and density on the apparent viscosity. The steady flow experimental data was fitted using Herschel-Bulkley model. The results show that aqueous SMT solutions of different density are pseudoplastic fluids and the flow curves of SMT solutions were described by the Hershel-Bulkley equation. The apparent viscosity decreases monotonically with increasing temperature under the same density and increases exponentially with increasing density at the fixed temperature. Rheological properties of aqueous SMT solutions can be applied in the calculation of density fractionation efficiency and provides a theoretical basis for flow simulation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 960-961)

Pages:

249-253

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. R. Gregory, K. A. Johnston: New. Zesl. J. Geol. Geop. Vol. 30 (1987), p.317.

Google Scholar

[2] G. Alexis, M. O. Charles, M. R. Tracy and M. O. Warrenton, U. S. Patent 8, 231, 006 (2012).

Google Scholar

[3] B. Plewinsky and R. Kamps: Die makromolekulare Chemie Vol. 185(7) (1984), p.1429.

Google Scholar

[4] K. Olivia, K. Angelika, S. Sandra, R. Thilo, K. Klaus and K. K. Ingrid: J. Plant. Nutr. Soil. Sc. Vol. 176(4) (2013), p.509.

Google Scholar

[5] P. C. Conceição, M. Boeni, J. Dieckow, C. Bayer and J. Mielniczuk: Rev. Bras. Ciênc. Solo Vol. 32(2) (2008), p.541.

DOI: 10.1590/s0100-06832008000200009

Google Scholar

[6] E. G. Morgun and M. I. Makarov: EURASIAN SOIL SCI+ Vol. 44(4) (2011), p.394.

Google Scholar

[7] P. L. Aberdeen: Norse landnám and its impact on the vegetation of Vatnahverfi, Eastern Settlement, Greenland. Unpublished PhD Thesis, University of Aberdeen College of Physical Sciences, 2013, 62−63.

Google Scholar

[8] K. L. Plathe, F. von der Kammer, M. Hassellöv, J. N. Moore, M. Murayama, T. Hofmann, M. F. Hochella Jr: Geochim. Cosmochim. Ac. Vol. 102(1) (2013), p.213.

Google Scholar

[9] S. T. Krukowski: J PALEONTOL Vol. 62(2) (1988), p.314.

Google Scholar

[10] Y. Morono, T. Terada, J. Kallmeyer and F. Inagaki: Environ. Microbiol. Vol. 15(10) (2013), p.2841.

Google Scholar

[11] Tiegang Li and Zhifang Xiong: Oceanologia Et Limnologia Sinica. Vol. 41(4) (2010), p.645 (In Chinese).

Google Scholar

[12] C. J. S. Bolch: Phycologia Vol. 36(6) (1997), p.472.

Google Scholar

[13] Li Zhang, Zhenkun Wu, Shaohua Song, Hong Chang, Guoqing Zhao: Rock and Mineral Analysis Vol. 31(5) (2012), p.780 (In Chinese).

Google Scholar

[14] A. Decou, H. V. Eynatten, I. Dunkl, D. Frei and G. Wörnera: J. S. Am. Earth. Sci. Vol. 45 (2013), p.6.

Google Scholar

[15] C. A. Corcea, D. Constantin, V. Anechitei, A. Timar-gabor and S. Filipescu: Carpath. J. Earth. Env. Vol. 8(1) (2013), p.139.

Google Scholar

[16] M. Sahin, K. Ayranci, E. Kosun, E. Ayranci: Chem. Geol. Vol. 264(1-4) (2009), p.96.

Google Scholar

[17] Tiyu Duan, Shiqi Wang and A. M. Faiia: Geology and Prospecting Vol. 37(5) (2001), p.38 (In Chinese).

Google Scholar