Electron Beam Irradiation on Substrate for Precise Dielectrophoretic Assembly of Carbon Nanotubes - A Simulation

Article Preview

Abstract:

The effect of electron beam irradiation on permittivity of silicon dioxide insulate layer was investigated. Theoretical analysis indicates that electron beam irradiation will change the permittivity of SiO2 through decreasing the molecular number per unit volume and increasing the polarizability of the sample. The escape of impurities during irradiation decreases the permittivity while the accumulation of space charge increases the permittivity. Simulation results show that with the change of permittivity, the electric field of the area irradiated by electron beam is strengthened locally and carbon nanotubes (CNTs) are more likely attracted to this area by dielectrophoresis. Therefore, the method could be used for precise positioning of CNTs for various applications in many areas including nanoelectronics, sensors, and new energies.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 960-961)

Pages:

69-72

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.H. Baughamn, A.A. Zakhidov and W.A. de Heer: Science Vol. 297 (2002), p.787.

Google Scholar

[2] J. Li, Q. Zhang, N. Peng and Q. Zhu: Appl. Phys. Lett. Vol. 86 (2005), p.153116.

Google Scholar

[3] R. Li, H.B. Li and Q.W. Li: Mater. Rev. Vol. 27 (2013), p.50.

Google Scholar

[4] L. An, C. Friedrich: Appl. Phys. Lett. Vol. 92 (2008), p.173103.

Google Scholar

[5] A.M. Cassell, N.R. Franklin and T.W. Tombler: J. Amer. Chem. Soc. Vol. 121 (1999), p.7975.

Google Scholar

[6] Y.K. Ren, H.R. Ao, J.H. Gu, H.Y. Jiang and A. Ramos: Acta Physica. Sinica Vol. 58 (2009), p.7869.

Google Scholar

[7] S. Banerjee, B. White, L. Huang, B.J. Rego, S.O. Brien and I.P. Herman: Appl. Phys. A Vol. 86 (2007), p.415.

Google Scholar

[8] S. Auvray, V. Derycke, M. Goffman, A. Filorama, O. Jost and J.P. Bourgoin: Nano Lett. Vol. 5 (2005), p.451.

Google Scholar

[9] S.G. Kwon, S.H. Kim, K.H. Kim, M.C. Kang and H.W. Lee: Trans. Nonferrous. Met. Soc. China Vol. 21 (2011), p.117.

Google Scholar

[10] J.E. Kim, C.S. Han: Nanotechnology Vol. 16 (2005), p.2245.

Google Scholar

[11] M. Dimaki, P. Boggild: Nanotechnology Vol. 15 (2004), p.1095.

Google Scholar

[12] X.D. Liu, X.Q. Zheng, Y.Q. Zhang, S.S. Yang, X.G. Qin and L. Wang: Adv. Technol. Electri. Eng. Energy Vol. 26 (2007), p.55.

Google Scholar

[13] F.H. Zheng, Y.W. Zhang, C. Xiao and J.F. Xia: Journal of Sichuan University (Natural Science Edition) Vol. 42 (2005), p.337.

Google Scholar

[14] W.Q. Li, H.B. Zhang: Appl. Surf. Sci. Vol. 256 (2010), p.3482.

Google Scholar

[15] W.Q. Li, H.B. Zhang: Micron Vol. 41 (2010), p.416.

Google Scholar