Low-Frequency Nanotesla Resolution of Magnetic Field Detection in Metglas/Magnetostrictive/Piezoelectric Laminates

Article Preview

Abstract:

We report nanotesla resolution in a three-phase Metglas/FeNi/PZT-5A multiferroic composite with one end rigidly clamped operating in the first-order bending resonant mode for low-frequency magnetic field detection. Strong bending magnetoelectric (ME) couplings induced by the ununiform strain distribution in the free-clamped magnetostrictive beam are achieved without the benefit of nonmagnetic tip mass, and its natural resonant frequency is much lower than that in operating free-free mode. In addition, high-permeability materials Metgals are attached on the magnetostrictive beam for magnetic flux concentrating and resolution improvement. Experimental results reveal that the three-phase ferromagnetic/magnetostrictive/piezoelectric composite with a cantilever beam structure exhibits a high bending ME coefficient of ~32.17 V/cm·Oe at the resonant bending frequency of 819Hz under Hdc=175Oe. At the resonant excitation, the maximum resolution of 7nT is acquired under Hac=1Oe. The proposed ME cantilever structure with high resolution provideds a promising application in low-frequency magnetic transducer and sensors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 960-961)

Pages:

695-699

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

Google Scholar

[2] J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, J Electroceram 7, 17 (2001).

Google Scholar

[3] J. Ryu, S. Priya, K. Uchino, and H. E. Kim, J Electroceram 8, 107 (2002).

Google Scholar

[4] J. Jiao, L. Y. Li, B. Ren, H. Guo, H. Deng, W. N. Di, X. Y. Zhao, W. P. Jing, and H. S. Luo, J. Appl. Phys. 111, 043909 (2012).

Google Scholar

[5] S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans. Ultrason. Ferr 51, 794 (2004).

Google Scholar

[6] X. W. Dong, B. Wang, K. F. Wang, J. G. Wan, and J. M. Liu, Sens. Actuators. A 153, 64 (2009).

Google Scholar

[7] J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J. M. Liu, Appl. Phys. Lett. 86, 202504 (2005).

Google Scholar

[8] S. X. Dong, J. R. Cheng, J. F. Li, and D. Viehland, Appl. Phys. Lett. 83, 4812 (2003).

Google Scholar

[9] Z. P. Xing, S. X. Dong, J. Y. Zhai, L. Yan, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 112911 (2006).

Google Scholar

[10] S. D. Moss, J. E. McLeod, I. G. Powlesland, and S. C. Galea, Sens. Actuators. A 175, 165 (2012).

Google Scholar

[11] V. M. Petrov, G. Srinivasan, M. I. Bichurin, and T. A. Galkina, J. Appl. Phys. 105, 063911 (2009).

Google Scholar

[12] T. Wu, M. Emmons, T. K. Chung, J. Sorge, and G. P. Carman, J. Appl. Phys. 107, 09D912 (2010).

Google Scholar

[13] J. R. Petrie, J. Fine, S. Mandal, G. Sreenivasulu, G. Srinivasan, and A. S. Edelstein, Appl. Phys. Lett. 99, 043504 (2011).

DOI: 10.1063/1.3617428

Google Scholar

[14] K. Bi, Y. G. Wang, and W. Wu, Sens. Actuators. A 166, 48 (2011).

Google Scholar

[15] J. Y. Zhai, S. X. Dong, Z. P. Xing, J. Q. Gao, J. F. Li, and D. Viehland, J. Phys. D: Appl. Phys. 42, 122001 (2009).

Google Scholar

[16] B. L. Fu, New theory of thin bending plates. (Science Press, Beijing, China, 2003).

Google Scholar