Effective Data Structure for the Multidimensional Orthogonal Bin Packing Problems

Article Preview

Abstract:

The actual in industry multidimensional orthogonal packing problem is considered in the article. Solution of a large number of different practical optimization problems, including resources saving problem, optimization problems in logistics, scheduling and planning comes down to the orthogonal packing problem which is NP-hard in strong sense. One of the indicators characterizing the efficiency of packing constructing algorithm is the efficiency of the used data structure. In the article a multilevel linked data structure that increases the speed of constructing of a packing is proposed. The carried out computational experiments show the high efficiency of the new data structure. Multilevel linked data structure is applicable for multidimensional orthogonal bin packing problems any kind.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 962-965)

Pages:

2868-2871

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gary, D. Johnson: Computers Intractability: a Guide to the Theory of NP-completeness (W.H. Freeman, San Francisco 1979).

Google Scholar

[2] A. Bortfeldt, G. Wascher: Constraints in container loading – A state-of-the-art review. European Journal of Operational Research. Vol. 229: 1 (2013), pp.1-20.

DOI: 10.1016/j.ejor.2012.12.006

Google Scholar

[3] G. Wascher, H. Haubner, H. Schumann: An improved typology of cutting and packing problems. European Journal of Operational Research. Vol. 183: 3 (2007), pp.1109-1130.

DOI: 10.1016/j.ejor.2005.12.047

Google Scholar

[4] A.V. Chekanin, V.A. Chekanin: Efficient algorithms for orthogonal packing problems. Computational Mathematics and Mathematical Physics. Vol. 53: 10 (2013), pp.1457-1465.

DOI: 10.1134/s0965542513100047

Google Scholar

[5] T.G. Crainic, G. Perboli, R. Tadei: Extreme point-based heuristics for three-dimensional bin packing. INFORMS, Journal on Computing. Vol. 20: 3 (2008), pp.368-384.

DOI: 10.1287/ijoc.1070.0250

Google Scholar

[6] A.V. Chekanin, V.A. Chekanin: Improved packing representation model for the orthogonal packing problem. Applied Mechanics and Materials. Vol. 390 (2013), pp.591-595.

DOI: 10.4028/www.scientific.net/amm.390.591

Google Scholar

[7] V.A. Chekanin, A.V. Chekanin: Optimization of the solution of the orthogonal packing problem. Applied informatics (Prikladnaya informatika). Vol. 4 (2012), pp.55-62, in Russian.

Google Scholar

[8] S. Martello, D. Pisinger, D. Vigo: The three-dimensional bin packing problem. Operations Research. Vol. 48: 2 (2000), pp.256-267.

DOI: 10.1287/opre.48.2.256.12386

Google Scholar

[9] M.A. Weiss: Data Structures and Algorithm Analysis in C++ (Pearson Education 2014).

Google Scholar