The Role of Tool Geometry and Process Parameters during Fly Shearing in Hot Rolling of Steel

Article Preview

Abstract:

Sheet metal shearing takes place immediately after hot rolling of steel. Due to the extreme operating conditions, flying shear blades suffer from severe wear and need frequent repair, significantly increasing the maintenance costs for steel producers. In order to optimise the shearing process and increase the tool lifetime, a finite element model was applied for performing a systematic variation of the blade geometry and process parameters. In the model, friction is taken into account by implementing a hybrid friction equation, which is suitable for the simulation of metal forming processes. Tool geometry and process parameters such as the vertical overlapping between the two shearing blades were varied in the simulation, in order to identify optimum process parameters. The results obtained show in particular that the variation of the vertical overlapping between both blades has a limited influence on the maximum calculated stresses, leading to the assumption that no significant changes in tool wear may be achieved by modifying it. On the other hand, it was found that higher cutting edge radii lead to significantly lower stresses for both flying shear blades, thus suggesting the possibility of decreasing tool wear through increasing values of the cutting edge radius.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

184-195

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Torres, H.; Horwatitsch, D.; Varga, M.; Schuster, M.; Adam, K.; Rodriguez Ripoll, M.: Hot shearing process: Correlation of numerical simulation with real wear phenomena, Tribology International, in press, 2014, http: /dx. doi. org/10. 1016/j. triboint. 2014. 01. 025.

DOI: 10.1016/j.triboint.2014.01.025

Google Scholar

[2] Torres, H.; Varga, M.; Adam, K.; Badisch, E.: Wear phenomena in high temperature sheet shearing blades, Wear, 2013, 306, pp.10-16.

DOI: 10.1016/j.wear.2013.06.024

Google Scholar

[3] Hambli, R.; Guerin, F.: Application of a neural network for optimum clearance prediction in sheet metal blanking processes, Finite Elements in Analysis and Design, 2003, 39, pp.1039-1052.

DOI: 10.1016/s0168-874x(02)00155-5

Google Scholar

[4] Arrazola, P.J.; Özel, T.; Umbrello, D.; Davies, M.; Jawahir, I.S.: Recent advances in modelling of metal machining processes, CIRP Annals - Manufacturing Technology, 2013, 62, pp.695-718.

DOI: 10.1016/j.cirp.2013.05.006

Google Scholar

[5] Kroiß, T.; Engel, U.; Merklein, M.: Comprehensive approach for process modeling and optimization in cold forging considering interactions between process, tool and press, Journal of Materials Processing Technology, 2013, 213, pp.1118-1127.

DOI: 10.1016/j.jmatprotec.2012.09.004

Google Scholar

[6] Özel, T.: Computational modelling of 3D turning: Influence of edge micro-geometry on forces, stresses, friction and tool wear in PcBN tooling, Journal of Materials Processing Technology, 2009, 209, pp.5167-5177.

DOI: 10.1016/j.jmatprotec.2009.03.002

Google Scholar

[7] Yen, Y. -C.; Jain, A.; Altan, T.: A finite element analysis of orthogonal machining using different tool edge geometries, Journal of Materials Processing Technology, 2004, 146, pp.72-81.

DOI: 10.1016/s0924-0136(03)00846-x

Google Scholar

[8] Arft, M.; Klocke, F.: High performance turning of austempered ductile iron (ADI) with adapted cutting inserts, Procedia CIRP, 2013, 8, pp.129-134.

DOI: 10.1016/j.procir.2013.06.077

Google Scholar

[9] Dogra, M.; Sharma, V.S.; Dureja, J.: Effect of tool geometry variation on finish turning – A Review, Journal of Engineering Science and Technology Review, 2011, 4, pp.1-13.

Google Scholar

[10] Wang, X.Z.; Masood, S.H.: Investigation of die radius arc profile on wear behaviour in sheet metal processing of advanced high strength steels, Materials & Design, 2011, 32, pp.1118-1128.

DOI: 10.1016/j.matdes.2010.11.005

Google Scholar

[11] Rech, J.; Yen, Y. -C.; Schaff, M.J.; Hamdi, H.; Altan, T.; Bouzakis, K.D.: Influence of cutting edge radius on the wear resistance of PM-HSS milling inserts, Wear, 2005, 259, pp.1168-1176.

DOI: 10.1016/j.wear.2005.02.072

Google Scholar

[12] Winkelmann, H.; Badisch, E.; Kirchgassner, M.; Danninger, H.: Wear mechanisms at high temperatures. Part 1: wear mechanisms of different Fe-based alloys at elevated temperatures, Tribology Letters, 2009, 34, pp.155-166.

DOI: 10.1007/s11249-009-9421-y

Google Scholar

[13] Winkelmann, H.; Varga, M.; Badisch, E.; Danninger, H.: Wear mechanisms at high temperatures: Part 2: temperature effect on wear mechanisms in the erosion test, Tribology Letters, 2009, 34, pp.167-175.

DOI: 10.1007/s11249-009-9425-7

Google Scholar

[14] Winkelmann, H.; Badisch, E.; Varga, M.; Danninger, H.: Wear mechanisms at high temperatures. Part 3: changes of the wear mechanism in the continuous impact abrasion test with increasing testing temperature, Tribology Letters, 2010, 37, pp.419-429.

DOI: 10.1007/s11249-009-9534-3

Google Scholar

[15] Varga, M.; Winkelmann, H.; Badisch, E.: Impact of microstructure on high temperature wear resistance, Procedia Engineering, 2011, 10, pp.1291-1296.

DOI: 10.1016/j.proeng.2011.04.215

Google Scholar

[16] Varga, M.; Rojacz, H.; Winkelmann, H.; Mayer, H.; Badisch, E.: Wear reducing effects and temperature dependence of tribolayer formation in harsh environment, Tribology International, 2013, 65, pp.190-199.

DOI: 10.1016/j.triboint.2013.03.003

Google Scholar

[17] So, H.; Faßmann, D.; Hoffmann, H.; Golle, R.; Schaper, M.: An investigation of the blanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process, Journal of Materials Processing Technology, 2012, 212, pp.437-449.

DOI: 10.1016/j.jmatprotec.2011.10.006

Google Scholar

[18] Subramonian, S.; Altan, T.; Ciocirlan, B.; Campbell, C.: Optimum selection of variable punch-die clearance to improve tool life in blanking non-symmetric shapes, International Journal of Machine Tools and Manufacture, 2013, 75, pp.63-71.

DOI: 10.1016/j.ijmachtools.2013.09.004

Google Scholar

[19] Chiappini, E.; Tirelli, S.; Albertelli, P.; Strano, M.; Monno, M.: On the mechanics of chip formation in Ti–6Al–4V turning with spindle speed variation, International Journal of Machine Tools and Manufacture, 2014, 77, pp.16-26.

DOI: 10.1016/j.ijmachtools.2013.10.006

Google Scholar

[20] Bäker, M.: Finite element simulation of high-speed cutting forces, Journal of Materials Processing Technology, 2006, 176, pp.117-126.

DOI: 10.1016/j.jmatprotec.2006.02.019

Google Scholar

[21] Arrazola, P.J.; Özel, T.: Investigations on the effects of friction modeling in finite element simulation of machining, International Journal of Mechanical Sciences, 2010, 52, pp.31-42.

DOI: 10.1016/j.ijmecsci.2009.10.001

Google Scholar

[22] Schey, J.A.; Lohn, A.H.: Durability of graphite films in plastic deformation, Journal of Lubrication Technology, 1975, 97, pp.289-294.

DOI: 10.1115/1.3452577

Google Scholar

[23] Petersen, S.B.; Martins, P.A.F.; Bay, N.: Friction in bulk metal forming: a general friction model vs. the law of constant friction, Journal of Materials Processing Technology, 1997, 66, pp.186-194.

DOI: 10.1016/s0924-0136(96)02518-6

Google Scholar

[24] Cockroft, M.G.; Latham, D.J.: Ductility and the workability of metals, Journal of the Institute of Metals, 1968, 96, pp.33-39.

Google Scholar

[25] Wang, L.; Yang, H.: Friction in aluminium extrusion—part 2: A review of friction models for aluminium extrusion, Tribology International, 2012, 56, pp.99-106.

DOI: 10.1016/j.triboint.2012.06.006

Google Scholar

[26] Bay, N.: Friction stress and normal stress in bulk metal-forming processes, Journal of Mechanical Working Technology, 1987, 14, pp.203-223.

DOI: 10.1016/0378-3804(87)90061-1

Google Scholar

[27] Hosseinkhani, K.; Ng, E.: Analysis of the cutting mechanics under the influence of worn tool geometry, Procedia CIRP, 2013, 8, pp.117-122.

DOI: 10.1016/j.procir.2013.06.075

Google Scholar

[28] Varga, M.; Winkelmann, H.; Badisch, E.; Schweiger, H.; Perko, J.: Blunting resistance of different cold work tool steels: Influence of chemical composition and heat treatment procedure, Tribologie und Schmierungstechnik, 2011, 58, pp.15-18.

Google Scholar