[1]
L. Sowa, A. Bokota, Numerical model of thermal and flow phenomena the process growing of the cc slab, Archives of Metallurgy and Materials. 56 (2011) 359.
DOI: 10.2478/v10172-011-0038-4
Google Scholar
[2]
T. Wegrzyn, J. Miroslawski, A.P. Silva, Oxide inclusions in steel welds of car body Materials, Science Forum . C 636 (2010) 585-591.
DOI: 10.4028/www.scientific.net/msf.636-637.585
Google Scholar
[3]
K. Hashimoto, T. Fujimatsu, N. Tsunekage, Study of rolling contact fatigue of bearing steels in relation to various oxide inclusions, J. Materials & Design. 32 (2011) 1605-1611.
DOI: 10.1016/j.matdes.2010.08.052
Google Scholar
[4]
J. HYUN PARK. Thermodynamics of the Formation of MgO-Al2O3-TiOx inclusions in Ti-Stabilized11Cr Ferritic Stainless steel, J. Metallurgical and Materials Transactions B. (2008) 856-860.
DOI: 10.1007/s11663-008-9172-4
Google Scholar
[5]
I.D. Buga, A.I. Trotsan, B.F. Belov, et al. Analysis of Refining Processes in Steel Ladle Treatment, J. Metallurgical and Mining Industry. 2 (2010) 3180-185.
Google Scholar
[6]
G. YUAN, G.Q. LI. An experimental study on silicon-aluminum complex deoxidation of titaniu -m bearing ultra-pure ferritic stainless steel, J. Journal of Iron and Steel Research. 25 (2013) 33-38.
Google Scholar
[7]
Y. LI, Z.H. JIANG, Deoxidation, Desulfurization and Reductive Dephosphorization of Stainless Steel Using Barium Bearing Alloys, J. Journal of Iron and Steel Research, 2006, 18(8): 14-18.
Google Scholar
[8]
T. Ikeda, Some thermochemical discussions on the oxidizing refining of steel, J. ISIJ Internatio- nal. 21 (1981) 433-438.
Google Scholar
[9]
Y.J. Kang, F. Li, K, Morita, and D. Sichen, Mechanism on the formation of liquid calcium aluminate inclusion fromMgO·Al2O3 spinel, J. Steel Research International. 77 (2006) 785.
DOI: 10.1002/srin.200606463
Google Scholar
[10]
W.Y. Cha, T. Miki, Y. Sasaki, Temperature Dependence Of Ti Deoxidation Equilibria of LiquidIron in Coexistence With Ti3O5 and Ti2O3 , J.ISIJ International. 48 (2008) 729.
DOI: 10.2355/isijinternational.48.729
Google Scholar
[11]
H.P. WANG, L.F. SUN, B. PENG, Inclusions for Ultra pure Ferritic Stainless Steels Containing 21% Chromium, J. Journal of Iron and Steel Research, International. 20 (2013) 70-74.
DOI: 10.1016/s1006-706x(13)60179-x
Google Scholar
[12]
S.F. Yang, J.S. Li, Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment[J]. International Journal of Minerals, Metallurgy and Materials. 18 (2011) 18-23.
DOI: 10.1007/s12613-011-0394-0
Google Scholar
[13]
V. Neerav, C.P. Petrus, J.F. Richard, Calcium Modification of Spinel Inclusions in Aluminum-Killed Steel: Reaction Steps , J. Metallurgical and Materials Transactions B. 43 (2012) 830-840.
DOI: 10.1007/s11663-012-9660-4
Google Scholar
[14]
M.T. Gong, Z. P Chen. Effect of Magnesium Treatment on Inclusion Formation and Solidification Structure Ferrite Stainless Steel 430, J. SPECIAL STEEL. 34 (2013) 48-51.
Google Scholar
[15]
Z.Z. Zhao, J.H. Chen, Organizations and Toughness of Rare-Earth ferritic stainless steel 430, J. Journal of The Chanese Rare Earth Society. 30 (2012) 97-101.
Google Scholar
[16]
D.E. Alman, P.D. Jablonski, Effect of minor elements and a Ce surface treatment on the oxidation behavior of an Fe–22Cr–0. 5Mn (Crofer 22 APU) ferritic stainless steel, J. International Journal of Hydrogen Energy. 32 (2007) 3743–3753.
DOI: 10.1016/j.ijhydene.2006.08.032
Google Scholar