Comparation of Numerical Methods for Calculation of Thin Slabs

Article Preview

Abstract:

The purpose of this paper is to compare calculation of internal forces and deformations of slabs for two calculation methods: the finite element method and the finite difference method. Two concrete slabs have been analysed. In the case of the finite element method, different element mesh are used, providing, thus, solutions in different variants. The calculation and algorithms is based on a thin slab theory. Variants calculate in program Scia Engineer effects of shearing forces by means of the Midlins theory or thin slab theory. Algorithms for the calculation were developed in Matlab.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-77

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] CEB - FIP Model Code 1990: Design Code. Commitee Euro-International du Beton, Thomas Telford, (1993).

DOI: 10.1680/ceb-fipmc1990.35430

Google Scholar

[2] C.K. Kim, M.H. Hwang, Non-linear analysis of skew thin plate by finite difference Metod. Journal Of Mechanical Science And Technology, 2012, Vol. 26, Iss. 4, pp.1127-1132. DOI: 10. 1007/s12206-012-0226-9.

DOI: 10.1007/s12206-012-0226-9

Google Scholar

[3] W., F. Chen, Plasticity in Reinforced Concrete. Mc. New York: Graw Hill, (1982).

Google Scholar

[4] R. Cajka, K. Burkovic, Coupled timber-concrete ceiling using bonded shear connectors. International Conference on Future Energy and Materials Research. Advanced Materials Research, Vol. 772, 2013, pp.130-135.

DOI: 10.4028/www.scientific.net/amr.772.130

Google Scholar

[5] Dan-Vasile Bompa, Traian Onen, Non-linear Behaviour in Advanced Analysis of Reinforced Concrete. In Proceedings of the 11th WSEAS International Conference on Sustainability in Science Engineering, pp.141-146. ISBN 978-960-474-080-2.

Google Scholar

[6] M. Krejsa, Algoritmizace inženýrských výpočtů (In English: Algorithmics engineering computational). [online]. 2013 [cit. 2013-3-1]. WWW: < http: /fast10. vsb. cz/krejsa/>.

Google Scholar

[7] M. Krejsa, P. Janas, R. Cajka, Using DOProC method in structural reliability assessment. Applied Mechanics and Materials, Vol. 300-301, 2013, pp.860-869, ISSN 1660-9336, DOI: 10. 4028/www. scientific. net/AMM. 300-301. 860.

DOI: 10.4028/www.scientific.net/amm.300-301.860

Google Scholar

[8] A. Materna, J. Ciganek, J. Brozovsky, Elastoplastic modelling of fibre reinforced concrete symplex. Proceedings of the 12th International Conference on Civil, Structural and Environmental Engineering Computing, CC 2009, 2009, Funchal, Madeira. 14p. ISBN 978-190508830-0.

DOI: 10.4203/ccp.91.127

Google Scholar

[9] Program Matlab, Information the program: <http: /www. mathworks. com/products/matlab/>.

Google Scholar

[10] G. Rombach, Anwendung der Finite-Elemente-Methode im Betonbau. 2. Auflage. Berlin, Ernst & Sohn, 2007. ISBN 978-3-433-01701-2.

DOI: 10.1002/stab.200001630

Google Scholar

[11] Scia Engineer [online]. 2012 [cit. 2012-01-01]. < http: /www. scia-online. com>.

Google Scholar

[12] S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells. McGraw-Hill, New York, (1959).

Google Scholar