[1]
RILEM Committee FMC 50, Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams, Materials and Structures 18 (1985) 285–290.
DOI: 10.1007/bf02472918
Google Scholar
[2]
RILEM Report 5, Fracture mechanics test methods for concrete, eds. S.P. Shah, A. Carpinteri, Chapman and Hall, London, (1991).
Google Scholar
[3]
H.N. Linsbauer, E.K. Tschegg, Fracture energy determination of concrete with cube-shaped specimen, Zement und Beton 31 (1986) 38–40.
Google Scholar
[4]
A. Strauss, T. Zimmermann, D. Lehký, D. Novák, Z. Keršner, Stochastic fracture-mechanical parameters for the performance based design of concrete structures, Structural Concrete (2014), (in press).
DOI: 10.1002/suco.201300077
Google Scholar
[5]
S. Korte, V. Boel, W. De Corte, G. De Schutter, Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests, Construction & Building Materials (2014), (in press).
DOI: 10.1016/j.conbuildmat.2014.01.090
Google Scholar
[6]
S. Seitl, S. Korte, W. De Corte, V. Boel, J. Sobek, V. Veselý, Selecting a suitable specimen shape with low constraint value for determination of fracture parameters of cementitious composites, Key Engineering Materials Vols. 577–578 (2014).
DOI: 10.4028/www.scientific.net/kem.577-578.481
Google Scholar
[7]
V. Veselý, J. Sobek, P. Frantík, M. Štafa, L. Šestáková, S. Seitl, Estimation of the zone of failure extent in quasi-brittle specimens with different crack-tip constraint conditions from stress field, Key Engineering Materials Vols. 592–593 (2014).
DOI: 10.4028/www.scientific.net/kem.592-593.262
Google Scholar
[8]
V. Veselý, L. Řoutil, S. Seitl, Wedge-Splitting Test – Determination of Minimal Starting Notch Length for Various Cement Based Composites Part I: Cohesive Crack Modelling, Key Engineering Materials Vols. 452–453 (2011) 77–80.
DOI: 10.4028/www.scientific.net/kem.452-453.77
Google Scholar
[9]
S. Seitl, J. Klusák, V. Veselý, L. Řoutil, Wedge-Splitting Test – Determination of Minimal Starting Notch Length for Various Cement Based Composites Part II: Crack and Notch Fracture Mechanics Approaches, Key Engineering Materials Vols. 452–453 (2011).
DOI: 10.4028/www.scientific.net/kem.452-453.81
Google Scholar
[10]
S. Seitl, V. Veselý, L. Řoutil, Two-parameter fracture mechanical analysis of a near-crack-tip stress field in wedge splitting test specimens, Computers & Structures 89 (2011) 1852–1858.
DOI: 10.1016/j.compstruc.2011.05.020
Google Scholar
[11]
V. Červenka, L. Jendele, J. Červenka, ATENA Program documentation – Part 1: Theory, Červenka Consulting, Praha, (2007).
Google Scholar
[12]
Z.P. Bažant, Analysis of work-of-fracture method for measuring fracture energy of concrete, ASCE Journal of Engineering Mechanics 122(2) (1996) 138–144.
DOI: 10.1061/(asce)0733-9399(1996)122:2(138)
Google Scholar
[13]
X-Z. Hu, K. Duan, Influence of fracture process zone height on fracture energy of concrete, Cement and Concrete Research 34 (2004) 1321–1330.
DOI: 10.1016/j.cemconres.2003.12.027
Google Scholar
[14]
V. Veselý, P. Frantík, Reconstruction of a fracture process zone during tensile failure of quasi-brittle materials, Applied and Computational Mechanics 4 (2010) 237–250.
Google Scholar
[15]
V. Veselý, P. Frantík, An application for the fracture characterisation of quasi-brittle materials taking into account fracture process zone influence, Advances in Engineering Software (2013).
DOI: 10.1016/j.advengsoft.2013.06.004
Google Scholar
[16]
P. Frantík, V. Veselý, Z. Keršner, Parallelization of lattice modelling for estimation of fracture process zone extent in cementitious composites, Advances in Engineering Software 60–61 (2013) 48–57.
DOI: 10.1016/j.advengsoft.2012.11.020
Google Scholar