Erosion Wear Behavior of Coatings with Growth Defects Produced by Ion Beam Enhanced Pulsed Filtered Vacuum Arc Deposition

Article Preview

Abstract:

The erosion wear behavior of TiN coatings with growth defects was studied. The TiN coatings were produced on a hard metal by ion beam enhanced pulsed filtered vacuum cathode arc deposition. The erosion wear was tested with a gas blast apparatus. In the test, TiN coatings were impacted at an impingement angle of 90° by angular SiC solid particles with an average diameter of 124um. The maximum depth of the erosion scar measured by the optical profiler was used to evaluate the erosion wear loss of the coatings. The coatings proved to have much lower erosion rate than that of the substrate material and consequently, the erosion rate increased significantly to the high level of the hard metal substrate after the coatings were penetrated. The failure mechanism was revealed by examining the surface morphologies of the coatings before and after the erosion test. The erosive wear of the TiN coatings with growth defects behaved as typical brittle materials. The damage mechanism of the coatings with growth defects was described.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

1527-1531

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.J. Martin, A. Bendavid, and T.J. Kinder: Surf. Coat. Technol. Vol. 81 (1996), p.36.

Google Scholar

[2] H. Randhawa and P. C. Johnson: Surf. Coat. Technol. Vol. 31 (1987), p.303.

Google Scholar

[3] L. Yang, J. Zou, and Z. Cheng: IEEE Trans. Plas. Sci. Vol. 25( 4) ( 1997), p.700.

Google Scholar

[4] B. F. Coll, P. Sathrum, R. Fontana, J. P. Peyre, D. Duchateau and M. Benmalek: Surf. Coat. Technol. Vol. 52 (1992), p.57.

Google Scholar

[5] H. Takikawa and H. Tanoue: IEEE Trans. Plasma Sci. Vol. 35 (2007), p.992.

Google Scholar

[6] C. Bergman: Surf. Coat. Technol. Vo. l36 (1988), p.243.

Google Scholar

[7] M. Scholl: Wear, Vol. 203-204 (1997), p.57.

Google Scholar

[8] Y.Y. Guu, J.F. Lin and C. -F. Ai: Thin Solid Films Vol. 302 (1997), p.193.

Google Scholar

[9] F.D. Lai and J.K. Wu: Surf. Coat. Technol. Vol. 88 (1996), p.183.

Google Scholar

[10] L.A. Dobrzański, M. Adamiak and G.E. D'Errico: J. Mater. Process. Technolo. Vol. 92-93 (1999), p.184.

Google Scholar

[11] L.A. Dobrzański and M. Adamiak: J. Mater. Process. Technolo. Vol. 133 (2003), p.50.

Google Scholar

[12] A.N. Kale, K. Ravindranath, D.C. Kothari and P.M. Raole: Surf. Coat. Technol. Vol. 145 (2001), p.60.

Google Scholar

[13] D. C. Kothari and A. N. Kale: Surf. Coat. Technol. Vol. 158 -159 (2002), p.174.

Google Scholar

[14] V. V. Uglov, V. M. Anishchik, V. V. Khodasevich, Zh. L. Prikhodko, S. V. Zlotski and G. Abadias, S. N. Dub: Sur. Coat. Technol. Vol. 180-181 (2004), p.519.

DOI: 10.1016/j.surfcoat.2003.10.095

Google Scholar

[15] R. L. Boxman, V. N. Zhitomirsky, I. Grimberg, L. Rapoport, S. Goldsmith and B. Z. Weiss, Surf. Coat. Technol., Vol. 125 (2000), p.257.

Google Scholar

[16] A.W. Baouchi and A.J. Perry: Surf. Coat. Technol. Vol. 49 (1991), p.253.

Google Scholar

[17] G. Håkansson, L. Hultman, J. -E. Sundgren, J. E. Greene and W. -D. Münz: Surf. Coat. Technol. Vol. 48 ( 1991), p.51.

Google Scholar

[18] C. N. Tai, E. S. Koh and K. Akari: surf. Coat. Technol. Vol. 43-44 (1990), p.324.

Google Scholar

[19] W. -D. Münz, I.J. Smith, D.B. Lewis and S. Creasey: Vacuum Vol. 48 (1997), p.473.

Google Scholar

[20] K. Golombek, L.A. Dobrzańskia and M. Sokovi´c: J. Mater. Process. Technol. Vol. 157-158 (2004), p.341.

Google Scholar

[21] W. -D. Münz, D.B. Lewis, S. Creasey, T. Hurkmans, T. Trinh and W. Vonijzendorn: Vacuum Vol. 46(4) (1995), p.323.

Google Scholar

[22] W. -D. Münz, T. Hurkmans, G. Keiren and T. Trinh: J. Vac. Sci. Technolo. A Vol. 11 (1993), p.2583.

Google Scholar

[23] H. Ljungcrantz, L. Hultman, J. -E. Sundgren, G. Hakansson and L. Karsson: Surf. Coat. Technol. Vol. 63 (1994), p.123.

Google Scholar

[24] H. Randhawa: J. Vac. Sci. Technolo. A Vol. 4 (1986), p.2755.

Google Scholar

[25] S. Boelens, and H. Veltrop: Surf. Coat. Technol. Vol. 33 (1987), p.63.

Google Scholar

[26] J. Salo, R. Lappalainen and A. Anttila: Appl. Phys. A Vol. 61(1995), p.353.

Google Scholar

[27] A. Anttila, R. Lappalainen, V. -M. Tiainen and M. Hakovirta: Adv. Mater. Vol. 9 (15) (1997), p.161.

Google Scholar