Synthesis and Catalytic Activity of Composite Materials TiO2/Ti-Al-MCM-41 by Chemical Vapor Deposition (CVD)

Article Preview

Abstract:

TiO2/Ti-Al-MCM-41 (TAM) with high Ti content (Si/Ti=6.2) was prepared by chemical vapor deposition (CVD) of TiCl4 on Al-MCM-41 at low reaction temperature (423 K). The sample was characterized by X-ray diffraction (XRD), N2 adsorption/desorption, high resolution transmission electron microscopy (HRTEM) and diffuse reflectance ultraviolet-visible spectroscopy (DR UV-vis). The results showed that Ti atoms were in tetrahedral coordinated in the framework of Al-MCM-41. Meanwhile, higher Ti4+ ions coordination and bulk anatase titania was observed in the DR UV-vis spectra. TAM still exhibited hexagonal p6m pore architectures, large specific surface area and narrow pore distribution. Catalytic activity of TAM for polystyrene (PS) pyrolysis has been investigated. The results showed that TAM exhibited high activity for the PS pyrolysis and good selectivity to liquid hydrocarbons of C5-C12 hydrocarbons.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

1749-1753

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.T. Kresge, M.E. Leonowicz, W.J. Roth, et al.: Nature Vol. 359 (1992), p.710.

Google Scholar

[2] D.P. Sawant, A. Vinub, F. Lefebvre and S.B. Halligudi: J. Mol. Catal. A: Chem. Vol. 262 (2007), p.98.

Google Scholar

[3] J. Jarupatrakoru and T. Don Tilley: J. Am. Chem. Soc. Vol. 124 (2002), p.8380.

Google Scholar

[4] C. Galacho, M.M.L. Ribeiro Carrott and P.J.M. Carrott: Micropor. Mesopor. Mater. Vol. 100 (2007), p.312.

Google Scholar

[5] K.T. Li and C.C. Lin: Catal. Today Vol. 97 (2004), p.257.

Google Scholar

[6] Zaki S. Seddegi, Uwais Budrthumal, Abdulrahman A. Al-Arfaj, et al.: Appl. Catal. A: Gen. Vol. 225 (2002), p.167.

Google Scholar

[7] B. Saha, P. Chowdhury and A.K. Ghoshal: Appl. Catal. B: Environ. Vol. 83 (2008), p.265.

Google Scholar

[8] D.P. Serrano, J. Aguado1 and J.M. Escola: Appl. Catal. B: Environ. Vol. 25 (2000), p.181.

Google Scholar

[9] J.S. Beck, J.C. Vartuli, W.J. Roth, et al.: J. Am. Chem. Soc. Vol. 114 (1992), p.10834.

Google Scholar

[10] A.J. Zhang, Z.H. Li, Z.H. Li, et al.: Appl. Surf. Sci. Vol. 254 (2008), p.6298.

Google Scholar

[11] K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al.: Pure Appl. Chem. Vol. 57(1985), p.603.

Google Scholar

[12] H. Jing, Z.Y. Guo, H. Ma, et al.: J. Catal. Vol. 212, (2002), p.22.

Google Scholar

[13] P. Ratnasamy, D. Srinivas and H. Knözinger: Adv. Catal. Vol. 48 (2004), p.1.

Google Scholar

[14] Á. Kukovecz, Z. Kónya and I. Kirics: J. Mol. Struct. Vol. 563-564 (2001), p.409.

Google Scholar

[15] L. Zhao and J.G. Yu: J. Colloid Interface Sci. Vol. 304 (2006), p.84.

Google Scholar

[16] E. Gianotti, A. Frache, S. Coluccia, J. M. Thomas, et al.: J. Mol. Catal. A: Chem. Vol. 204-205 (2003), p.483.

Google Scholar

[17] Griselda A. Eimer, Sandra G. Casuscelli, Guillermo E. Ghione et al.: Appl. Catal., A: Gen. Vol. 298 (2006), p.232.

Google Scholar

[18] T. Blasco, A. Corma, M.T. Navarro, et al.: J. Catal. Vol. 156 (1995), p.65.

Google Scholar

[19] H. Ukei, T. Hirose, S. Horikawa, et al.: Catal. Today Vol. 62 (2000), p.67.

Google Scholar

[20] X. Congxia, L. Fusheng, Y. Shitao, et al.: Catal. Commun. Vol. 9 (2008) , p.1132.

Google Scholar