Preparation of Y2Ti2O7 Nanocrystal by Sol-Gel Method and its Characterization

Article Preview

Abstract:

Y2Ti2O7 nanocrystals have been prepared at the calcining temperature of 700-900°C by using tetrabutyl titanate as starting materials and citric acid as chelator. The preparation process was monitored by XRD, FT-IR and TG-DTA analysis. Compared with traditional solid state reaction (SSR), the present used methods can prepare can Y2Ti2O7 nanocrystals at a relatively low temperature (750°C) and with shortened reaction time (dwelling time of 1 h). The morphology and averge size of as-prepared products were analysized by FESEM. Results showed that the as-prepared Y2Ti2O7 with good dispersibility and narrow size-distritution were all sphere-like; the average size was about 40-50 nm, Also, the obtained products had higher BET surface area (32 m2/g). These properties are very helpful for a photocatalytic catalyst to achieve excellent activity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

2175-2179

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Subramanian, G. Aravamudan and G.V. Subba Rao: Progress in Solid State Chemistry Vol. 15 (1983), p.55.

DOI: 10.1016/0079-6786(83)90001-8

Google Scholar

[2] E.E. Erickson, D. Gray, K. Taylor, R.T. Macaluso, L.A. LeTard, G.S. Lee and J.Y. Chan: Mater. Res. Bull. Vol. 37 (2002), p. (2077).

Google Scholar

[3] C.R. Stanek, L. Minervini and R.W. Grimes: J. Am. Cera. Soc. Vol. 85 (2002). p.2792.

Google Scholar

[4] N. Kim and C.P. Grey: Dalton Trans. (2004), p.3048.

Google Scholar

[5] R. Abe, M. Higashi, Z. Zou, K. Sayama and Y. Abe: Chem. Lett. Vol. 33 (2004), p.954.

Google Scholar

[6] M. Higashi, R. Abe, K. Sayama, H. Sugihara and Y. Abe: Chem. Lett. Vol. 34 (2005), p.1122.

Google Scholar

[7] R. Abe, M. Higashi, K. Sayama, Y. Abe and H. Sugihara: J. Phys. Chem. B Vol. 110 (2006). p.2219.

Google Scholar

[8] A.M. Srivastava: J. Lumin. In Press, Corrected Proof (2009).

Google Scholar

[9] P. Jenouvrier, G. Boccardi, J. Fick, A.M. Jurdyc and M. Langlet: J. Lumin. Vol. 113 (2005), p.291.

Google Scholar

[10] P. Jenouvrier, M. Langlet, R. Rimet and J. Fick: Appl. Phys. A: Mater, Sci. & Proc. Vol. 77 (2003), pp.687-692.

Google Scholar

[11] P. Jenouvrier, J. Fick, M. Audier and M. Langlet: Opt. Mater. Vol. 27 (2004), p.131.

Google Scholar

[12] N. Pailh, M. Gaudon and A. Demourgues: Mater. Res. Bull. In Press, Corrected Proof (2009).

Google Scholar

[13] S. Ishida, F. Ren and N. Takeuchi: J. Am. Cera. Soc. Vol. 76 (1993), p.2644.

Google Scholar

[14] A.L. Hector and S.B. Wiggi: J. Solid State Chem. Vol. 177 (2004), p.139.

Google Scholar

[15] Y.P. Tong, J.W. Zhu, L.D. Lu, X. Wang and X.J. Yang: J. Alloys Compd. Vol. 465 (2008), p.280.

Google Scholar

[16] Y.P. Tong, Z.X. Yu, L.D. Lu, X.J. Yang and X. Wang: Mater. Res. Bull. Vol. 43 (2008), p.2736.

Google Scholar

[17] G. Xiong, Z.L. Zhi, X.J. Yang, L.D. Lu and X. Wang: J. Mater. Sci. Lett. Vol. 16 (1997), p.1064.

Google Scholar

[18] L.L. Zhang, G.P. Liu, W.G. Zhang, L.D. Lu, X.J. Yang and X. Wang: Chin, J. Inorg. Chem. Vol. 21 (2005), p.1093.

Google Scholar

[19] M. Langlet, C. Coutier, J. Fick, M. Audier, W. Meffre, B. Jacquier and R. Rimet: Opt. Mater. Vol. 16 (2001), p.463.

DOI: 10.1016/s0925-3467(01)00007-6

Google Scholar

[20] H. Brixner: Inorg. Chem. Vol. 3 (1964), p.1065.

Google Scholar