Structure and Magnetic Properties of Carbon Encapsulated Co Nanoparticles Prepared by the Pyrolysis of Mixture of Sucrose and Cobalt Nitrate

Article Preview

Abstract:

Carbon-encapsulated Cobalt nanoparticles were synthesized with sucrose as carbon source and cobalt nitrate as metal source in nitrogen atmosphere. The weight of purified sample could arrive around 12-20 grams at one time. The as-prepared CECNPs sample was characterized by transmission electron microscopy (TEM), X-ray diffraction technique (XRD), vibrating sample magnetometer (VSM) and Raman spectroscopy. The results showed CECNPs was typical core / shell structure on nanometer scale, the core was cobalt single crystal, the shell was graphitic carbon, and the particle size was about 30nm. The magnetic measurement revealed that CECNPs was ferromagnetic material with the quite small remanent magnetizations Mr of 3.7emu/g and coercive forces Hc of 275Oe at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

2201-2204

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.E. Nolan, D.C. Lynch, A.H. Culter: Carbon Vol. 34 (1996), p.817.

Google Scholar

[2] R.H. Kodama: J Magn Magn Mater Vol. 200 (1999), p.359.

Google Scholar

[3] J. Nishijo, C. Okabe, O. Oishi, N. Nishi: Carbon Vol. 44 (2006), p.2943.

Google Scholar

[4] M. Bystrzejewski, H. Lange, A. Huczko, H.I. Elim, W. Ji: Chem. Phy. Lett. Vol. 444 (2007), p.113.

Google Scholar

[5] W.S. Seo, J.H. Lee, X. Sun, Y. Suzuki, Davidmann, Z. Liu, M. Terashima, P.C. Yang, M.V. Mcconnell, D.G. Nishimura, H. Dai: Nat. Mater. Vol. 5 (2006), p.971.

Google Scholar

[6] M. Bystrzejewski, S. Cudziło, A. Huczko, H. Lange, G. Soucy, G. Cota-Sanchez, W. Kaszuwara: Biomol. Eng. Vol. 24 (2007), p.555.

DOI: 10.1016/j.bioeng.2007.08.006

Google Scholar

[7] R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney: Science Vol. 259 (1993), p.346.

Google Scholar

[8] Z.Y. Zhong, H.Y. Chen, S.B. Tang, J. Ding, J.Y. Lin, K.L. Tan: Chem. Phy. Lett. Vol. 330 (2000), p.41.

Google Scholar

[9] Y. Lu, Z.P. Zhu, Z.Y. Liu: Carbon Vol. 43 (2005), p.369.

Google Scholar

[10] P.J.F. Harris, S.C. Tsang: Chem. Phy. Lett. Vol. 293 (1998), p.53.

Google Scholar

[11] T. Hayashi, S. Hirono, M. Tomita, S. Umemura: Nature Vol. 381(1996), p.772.

Google Scholar

[12] Z.H. Wang, C.J. Choi, B.K. Kim, J.C. Kim, Z.D. Zhang: Carbon Vol. 41 (2003), p.1751.

Google Scholar

[13] B.H. Liu, J. Ding, Z.Y. Zhong, Z.L. Dong, T. White, J.Y. Lin: Chem. Phy. Lett. Vol. 358 (2002), p.96.

Google Scholar

[14] R. Saito, A. Jorio, A.G.S. Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta: Phys. Rev. Lett. Vol. 88 (2002), p.027401.

Google Scholar

[15] R.J. Nemanich, S.A. Solin: Phys. Rev. B Vol. 20 (1979), p.392.

Google Scholar

[16] P. Tan, S. Dimovski, Y. Gogotsi: Phil. Trans. R Soc. Lond. A Vol. 362 (2004), p.2289.

Google Scholar

[17] F. Tuinstra, J.L. Koenig: J Chem. Phy. Vol. 53 (1970), p.1126.

Google Scholar