Pitting Corrosion Behavior in Laser Weld Metals of 2205 DSS with Continuous Heat Treatment

Article Preview

Abstract:

Pitting corrosion behavior in laser weld metals of 2205 DSS with continuous heat treatment was investigated by cyclic polarization tests in a 3.5%NaCl solution at room temperature. The results indicated their excellent pitting corrosion resistances in this chloride solution and wide passive regions were observed for all the welds tested. The results demonstrated that laser continuous heat treatment can decrease the problems such as excessive ferrite and intermetallic phases by controlling secondary austenite microstructure. The effects of varying higher heat input on microstructure, mechanical properties and pitting corrosion resistance also were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

3884-3888

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri and S. Sundaresan: Mater. Sci. Eng. A Vol. 358(2003), pp.9-16.

Google Scholar

[2] J.D. Kordatos, G. Fourlaris, G. Papadimitriou: Scripta Materialia, Vol. 44(2001), pp.401-408.

Google Scholar

[3] D.Y. Kobayashi, S. Wolynec: Mater. Res. vol. 2. (1999).

Google Scholar

[4] C.J. Park, V.S. Rao, H.S. Kwon: Corrosion . Vol. 61(2005), pp.76-83.

Google Scholar

[5] R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa and H. Maza: Mater. Charact. Vol. 59(2008), P. 447-453.

DOI: 10.1016/j.matchar.2007.03.004

Google Scholar

[6] S.H. Wang, P. K . Chiu, J.R. Yang, J. Fang: Mater. Sci. Eng. A Vol. 420(2006), pp.26-33.

Google Scholar

[7] H.C. Wu, L. W . Tsay, C . Chen: ISIJ Int. Vol. 44(2004) pp.1720-1726.

Google Scholar

[8] C. M . Garzón, A. J . Ramirez: Acta Mater. Vol. 54 (2006), pp.3321-3331.

Google Scholar

[9] J . Nowacki, A. Łukojć: Mater. Technol. Vol. 164-165 (2005), P. 1074-1081.

Google Scholar

[10] J. O . Nilsson, L. Karlsson, J.O. ANDERSON: Mate. Sci. technol. vol. 11 (1995), pp.276-283.

Google Scholar

[11] H.Y. Liou, R. I . Hsieh, W.T. Tsai: Mater. Chem. Phys. (2002), pp.33-42.

Google Scholar

[12] P. FERRO, A. TIZIANI, and F. BONOLLO: WELD. RES. Vol. 87(2008).

Google Scholar

[13] M. Martinsa, L.C. Castelettib: Mater. Charact. Vol. 6 0 ( 2 0 0 9 )pp.150-155.

Google Scholar

[14] P. Bala Srinivasan, V. Muthupandi, V. Sivan, P. Bala Srinivasan and W. Dietzel: Mater. Eng. Perform. Vol. 15(2006), pp.758-764.

Google Scholar

[15] A . Bautista, G. Blanco, F. Velasco, M.A. Martı´nez: Constr. Build. Mater. Vol. 21(2007), P. 1267-1276.

Google Scholar

[16] P. Bala Srinivasan, V. Muthupandi, W. Dietzel and V. Sivan: Mater. Design. Vol. 27 (2006), P. 182-191.

Google Scholar

[17] E.A.M. Hussain: An electrochemical investigation of erosion corrosion of duplex stainless steel in seawater containing sand particles, Ph.D. Thesis, Cranfield University, (2001).

Google Scholar

[18] E.A.M. Hussain and M.J. Robinson : Corrosion Sci. Vol. 49( 2007), P. 1737-1754.

Google Scholar

[19] E. Symniotis : Corrosion Vol. 46 (1990), pp.2-12.

Google Scholar