Dielectric Tunable Properties of Ba0.6Sr0.4TiO3 Thin Films with and without LSCO Buffer Layer

Article Preview

Abstract:

Barium strontium titanate Ba0.6Sr0.4TiO3 (BST) thin films were fabricated by pulsed laser deposition (PLD) technique on Pt/TiO2/SiO2/Si substrate with and without high (100) oriented LSCO buffer layer. Crystal structure and surface morphology of BST thin films with and without LSCO buffer layer were characterized by X-ray diffraction (XRD) and atom force microscope (AFM). The dielectric measurements were conducted on metal-insulator-metal capacitors at the frequency from 100 Hz to 1M Hz and at room temperature. It was found that the LSCO buffer layer was beneficial for BST films to decrease surface roughness, dielectric loss and to increase grain size, dielectric constant, tunability and figure of merit (FOM). The influence of LSCO buffer layer on the microstructure, dielectric and tunable properties of BST thin films were analyzed. At 1M Hz, the dielectric constants of BST films with and without LSCO buffer layer are 684 and 592, respectively. The tunability of BST thin film with LSCO buffer layer was about 65.48%, which was higher than that (about 41.84%) of BST thin film without LSCO buffer layer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

504-509

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Shin, C.S. Hwang, H.J. Kim, Appl. Phys. Lett. Vol. 67 (1995), p.2819.

Google Scholar

[2] A. Tanaka, IEEE Trans. Electronic Devices. Vol. 43 (1996) 1844.

Google Scholar

[3] D. Kim, Y. Choi, M.G. Allen, J. S. Kenney, D. Kiesling, IEEE Trans. Microwave Theory Tech. 5 Vol. 0 ( 2002) , p. (2093).

Google Scholar

[4] J. Im, O. Auciello, P. K. Baumann, S. K. Streiffer, D. Y. Kaufman, and A. R. Krauss, Appl. Phys. Lett. Vol. 76 (2000), p.625.

Google Scholar

[5] W. Chang, J.S. Horwitz, A.C. Carter, J.M. Pond, S.W. Kirchoefer, C.M. Gilmore, D.B. Chrisey, Appl. Phys. Lett. Vol. 74 (1999) , p.1033.

DOI: 10.1063/1.123446

Google Scholar

[6] M.W. Cole, C. Hubbard, E. Ngo, M. Ervin, M. Wood, R.G. Geyer, J. Appl. Phys. Vol. 92 (2002) , p.475.

Google Scholar

[7] K.H. Yoon, J.H. Sohn, B.D. Lee and D. H. Kang, Appl. Phys. Lett. Vol. 81 (2002) , p.5012.

Google Scholar

[8] D. Peng, Z. Meng, Microelectronic Engineering. Vol. 66 (2003) , p.631.

Google Scholar

[9] Q. X. Jia, X. D. Wu, S. R. Foltyn, and P. Tiwari. Appl. Phys. Lett. Vol. 66 (1995) , p.2197.

Google Scholar

[10] J. Miao, L. Cao, J. Yuan, W. Chen, H. Yang, B. Xu, X. Qiu, B. Zhao. J. Cryst. Growth Vol. 276 (2005) , p.498.

Google Scholar

[11] X.G. Tang, H.F. Xiong, L.L. Jiang, H.L.W. Chan. J. Cryst. Growth Vol. 285 (2005) , p.613.

Google Scholar

[12] Y.N. OH, S.G. YOON, Jpn. J. Appl. Phys. Vol. 43 (2004) , p.1442.

Google Scholar

[13] Z. Wei, H. Xu, M. Noda, M. Okuyama. J. Cryst. Growth Vol. 237-239 (2002) , p.443.

Google Scholar

[14] K.T. Kim, C. Il Kim, Thin Solid Films. Vol. 472 (2005) , p.26.

Google Scholar

[15] D. Wu, A. Li, H. Ling, X. Yin, C. Ge, M. Wang, N. Ming, Appl. Surf. Sci. Vol. 165 (2000) , p.309.

Google Scholar

[16] D.K. Choi, J.Y. Choi, J.H. Won, S.H. Pack, Mater. Res. Soc. Symp. Proc. Vol. 433 (1996) , p.45.

Google Scholar

[17] Padmini, T. R. Taylor, M. J. Lefevre, A. S. Nagra, R. A. York, and J. S. Speck, Appl. Phys. Lett. Vol. 75 (1999) , p.3186.

Google Scholar

[18] M. Shaw, Z. Suo, M. Huang, E. Liniger, R. B. Laibowitz, and J. D. Baniecki, Appl. Phys. Lett. Vol. 75 (1999) , p.2129.

DOI: 10.1063/1.124939

Google Scholar

[19] S. Hyun, J. H. Lee, S. S. Kim, K. Char, S. J. Park, J. Sok, and E. H. Lee, Appl. Phys. Lett. Vol. 77 (2000) , p.3084.

Google Scholar