Mechanical, Thermal, and Morphological Properties of Thermoplastic Starch/Poly(lactic acid/Poly(butylene adipate-co-terephthalate) Blends

Article Preview

Abstract:

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tg and Tc of TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tc of TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

312-316

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Nashed, R. P. G. Rutgers, P. A. Sopade, Starch/Stärke 55 (2003) 131-137.

Google Scholar

[2] G. H. Yew, A. M. Mohd Yusof, Z. A. Mohd Ishak, U. S. Ishiaku, Polym. Degrad. Stab. 90 (2005) 488-500.

DOI: 10.1016/j.polymdegradstab.2005.04.006

Google Scholar

[3] M. Kaseem, K. Haman, F. Deri, Polym. Sci. 54 (2012 165-176.

Google Scholar

[4] W. Ning, Y. Jiugao, M. Xiaofei, Polym. Compos. 29 (2008) 551-559.

Google Scholar

[5] E. Schwach, J. L. Six, L. Averous, J. Polym. Environ. 16 (2008) 286-297.

Google Scholar

[6] J. Wootthikanokkhan, P. Kasemwananimit, N. Sombatsampop, A. Kositchaiyong, S. Isarankurana Ayutthaya, N. Kaabbuathong, J. Appl. Polym. Sci. 126 (2012) E388-E395.

DOI: 10.1002/app.36896

Google Scholar

[7] P. Sarazin, G. Li, W. J. Orts, B. D. Favis, Polymer 49 (2008) 599-609.

Google Scholar

[8] J. Ren, H. Fu, T. Ren, W. Yuan, Carbohydr. Polym. 77 (2009) 576-582.

Google Scholar

[9] A. Teamsinsungvon, Physical properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends and their composites, Master's Thesis, Suranaree University of Technology (2011).

DOI: 10.4028/www.scientific.net/amr.123-125.193

Google Scholar

[10] J. Leadprathom, S. Suttiruengwong, P. Threepopnatkul, M. Seadan, J. Met. Mater. Miner. 20 (2010) 87-90.

Google Scholar

[11] W. Phetwarotai, D. Aht-Ong, Mater. Sci. Forum 695 (2011) 178-181.

Google Scholar

[12] M. A. Huneault, H. Li, Polymer 48 (2007) 270-280.

Google Scholar

[13] L. Yu, E. Petinakis, K. Dean, H. Liu, Q, Yuan, J. Appl. Polym. Sci. 119 (2011) 2189-2195.

Google Scholar

[14] H. Li, M. A. Huneault, Int. Polym. Proc. 5 (2008) 412-418.

Google Scholar

[15] S. Karagoz, G. Ozkoc, Polym. Eng. Sci. DOI 10. 1002 (2013) 1-11.

Google Scholar

[16] Q. Shi, C. Chen, L. Geo, L. Jiao, H. Xu, W. Guo, Polym. Degrad. Stab. 96 (2011) 175-182.

Google Scholar

[17] L. Jiang, M. P. Wolcott, J. Zhang, Biomacromolecules 7 (2006) 199-207.

Google Scholar

[18] H. Li, M. A. Huneault, J. Appl. Polym. Sci. 122 (2011) 134-141.

Google Scholar