Preparation of Pulse Electrodeposited Mo-Ni Coating

Article Preview

Abstract:

Mo-Ni coatings were prepared on Ni alloy by pulse electrodeposition method. The effects of current density, electrodeposition temperature, frequency, duty cycle and electrodeposition time on microhardness of Mo-Ni coating were researched, respectively. Microhardness of Mo-Ni coating increases with the increase of current density, electrodeposition temperature, frequency and electro-deposition time in 17.75 A/dm2 ~ 19.25 A/dm2. 21 °C~ 25 °C, 1000 Hz ~ 5000 Hz and 10 min ~ 20 min, respectively. Microhardness of Mo-Ni coating decreases with the increase of electrodeposition temperature, electrodeposition time and duty cycle in 25 °C ~ 37 °C, 20 min ~ 30 min and 0.5 ~ 0.9, respectively. In the range of current density from 19.25A/dm2 to 20.75 A/dm2, microhardness of Mo-Ni coating is neariy constant with the increase of current density. When electrodeposition parameters: current density 19.25 A/dm2, electro-deposition temperature 25 °C, frequency 5000 Hz, duty cycle 0.5 and electrodeposition time 20 min, microhardness of Mo-Ni coatin is as high as 707.9 HV.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 971-973)

Pages:

161-164

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Reza, S.R. Reza, M. Reza, et al.: Journal of the European Ceramic Society Vol. 34 (2014), p. (2013).

Google Scholar

[2] X.Z. Liu, L.P. Xiong, X.Z. Liu, L.Y. Luo, et al.: Spectroscopy and Spectral Analysis Vol. 34 (2014), p.298.

Google Scholar

[3] M. Gupta, N. Curry, P. Nylén, et al.: Surface and Coatings Technology Vol. 220 (2013), p.20.

Google Scholar

[4] A. Joulia, M. Vardelle, S. Rossignol: Journal of the European Ceramic Society Vol. 33 (2013), p.2633.

Google Scholar

[5] H. Waki, I. Nishikawa, A. Kobayashi: Vacuum Vol. 88 (2013), p.93.

Google Scholar

[6] I. Keller, D. Naumenko, W.J. Quadakkers, et al.: Surface and Coatings Technolog Vol. 215 (2013), p.24.

Google Scholar

[7] H. Chen, T.H. Hyde, K.T. Voisey, et al.: Materials Science and Engineering: A Vol. 585 (2013), p.205.

Google Scholar

[8] P. Song, D. Naumenko, R. Vassen: Surface and Coatings Technology Vol. 221 (2013), p.207.

Google Scholar

[9] A.A. Shokati, N. Parvin, N. Sabzianpour, et al.: Journal of Alloys and Compounds Vol. 549 (2013), p.141.

Google Scholar

[10] C.Y. Ho, R.B. Patil, C.C. Wang, et al.: Surface Science Vol. 606 (2012), p.1173.

Google Scholar

[11] F.R. Lamastra, I. Cacciotti, A. Bellucci, et al.: Intermetallics Vol. 22 (2012), p.241.

Google Scholar

[12] M. Song, H.B. Guo, M. Abbas, et al.: Surface and Coatings Technolog Vol. 216 (2013), p.1.

Google Scholar

[13] X.Z. Liu, X. Li, A.B. Yu, et al.: Journal of Rare Earths Vol. 27 (2009), p.480.

Google Scholar

[14] X.Z. Liu, J. Chen: C.N. Patent, CN 201110382777. 5, 2011-11-28.

Google Scholar