[1]
R. Merletti, M. Aventaggiato, A. Botter, A. Holobar, H. Marateb and T. M. Vieira. Advances in surface EMG: recent progress in detection and processing techniques. Critical Reviews™ in Biomedical Engineering, Vol. 38 (2010), pp.305-311.
DOI: 10.1615/critrevbiomedeng.v38.i4.10
Google Scholar
[2]
L. J. Hargrove, K. Englehart and B. Hudgins. A Comparison of Surface and Intramuscular Myoelectric Signal Classification. IEEE Trans. Biomed. Eng., Vol. 54 (2007), pp.847-853.
DOI: 10.1109/tbme.2006.889192
Google Scholar
[3]
B. Hudgins, P. Parker and R. N. Scott. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng., Vol. 40 (1993), pp.82-94.
DOI: 10.1109/10.204774
Google Scholar
[4]
X. Chen, X. Zhu and D. Zhang. A discriminant bispectrum feature for surface electromyogram signal classification. Med. Eng. Phys., Vol. 32 (2010), pp.126-135.
DOI: 10.1016/j.medengphy.2009.10.016
Google Scholar
[5]
M. A. Oskoei and H. Hu. Support vector machinebased classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng., Vol. 55 (2008), p.1956-(1965).
DOI: 10.1109/tbme.2008.919734
Google Scholar
[6]
S. Bitzer and P. van der Smagt. Learning EMG control of a robotic hand: towards active prostheses, in IEEE International Conference on Robotics and Automation (ICRA) (IEEE Press, Orlando, FL, 2006), pp.2819-2823.
DOI: 10.1109/robot.2006.1642128
Google Scholar
[7]
T. Lorrain, N. Jiang and D. Farina. Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses. J. NeuroEng. Rehabil., Vol. 8 (2011).
DOI: 10.1186/1743-0003-8-25
Google Scholar
[8]
D. L. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization. Proceedings Nat. Acad. Sci., Vol. 100 (2003), pp.2197-2202.
DOI: 10.1073/pnas.0437847100
Google Scholar
[9]
D. Yang, J. Zhao, L. Jiang and H. Liu. Dynamic hand motion recognition based on transient and steady-state EMG signals. International Journal of Humanoid Robotics, Vol. 9 (2012).
DOI: 10.1142/s0219843612500077
Google Scholar
[10]
Z. Zhang and B. Rao. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE J. Sel. Topics Signal Process., Vol. 5 (2011), pp.912-926.
DOI: 10.1109/jstsp.2011.2159773
Google Scholar
[11]
M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res., Vol. 1 (2001), pp.211-244.
Google Scholar
[12]
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, Vol. 52 (2006), pp.1289-1306.
Google Scholar