Sensitivity Analysis and Identification of Damping Parameters in the Finite Element Modeling of Piezoelectric Ceramic Disks

Article Preview

Abstract:

Finite element method is widely used to simulate the behavior of piezoelectric ceramics; however, its application is limited by the knowledge of the material properties. The constitutive equations are well defined for low deformations (linear case) and for materials without energy losses. In the finite element formulation of piezoelectric equations, the energy losses are introduced in several ways. In this paper a methodology to adjust the damping parameters for the two most used models, Rayleigh parameters and complex constitutive equations, is presented. The simplest Rayleigh model uses only two damping constants to model the energy losses; one proportional to the mass matrix and the other proportional to the stiffness matrix. The other model uses complex values for all parameters in the constitutive equations; in this approach ten different damping constants must be determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

288-293

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Allik, T. Hughes, Finite element method for piezoelectric vibration. Int. J. Numer. Meth. Engng. 2 (1970) 151–157.

DOI: 10.1002/nme.1620020202

Google Scholar

[2] N. Guo, P. Cawley, D. Hitchings, The finite element analysis of the vibration characteristics of piezoelectric discs. J. Sound. Vibr. 159(1) (1992) 115-138.

DOI: 10.1016/0022-460x(92)90454-6

Google Scholar

[3] IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176 (1987).

Google Scholar

[4] L. San Emeterio, P. Sanz, A. Ramos, Influence of dielectric losses on the shift of the fundamental frequencies of thickness mode piezoelectric ceramic resonators, J. Eur. Ceram. Soc. 19 (1999) 1165-1169.

DOI: 10.1016/s0955-2219(98)00393-8

Google Scholar

[5] G. Nader, E.C.N. Silva and J.C. Adamowski, Effective damping value of piezoelectric transducer determined by experimental techniques and numerical analysis, ABCM Symposium Series in Mechatronics, 1 (2004) 271-279.

Google Scholar

[6] S. Sherrit, T. Masys, H. Wiederick, B. Mukherjee, Determination of the Reduced Matrix of the Piezoelectric, Dielectric, and Elastic Material Constants for a Piezoelectric Material With C¥ Symmetry, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58 (2011).

DOI: 10.1109/tuffc.2011.2008

Google Scholar

[7] T. Lahmer, M. Kaltenbacher, B. Kaltenbacher, R. Lerch, E. Leder, FEM-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 (2008).

DOI: 10.1109/tuffc.2008.664

Google Scholar

[8] N. Perez, M.A.B. Andrade, F. Buiochi, J.C. Adamowski, Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks , IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57 (2010) 271-279.

DOI: 10.1109/tuffc.2010.1751

Google Scholar

[9] S. J. Rupitsch, F. Wolf, A. Sutor, R. Lerch, Reliable modeling of piezoceramic materials utilized in sensors and actuators, Acta Mech. 223 (2012) 1809-1821.

DOI: 10.1007/s00707-012-0639-7

Google Scholar

[10] U. Jonsson, B. Andersson, O. Lindahl, A FEM-based method using harmonic overtones to determine the effective elastic, dielectric, and piezoelectric parameters of freely vibrating thick piezoelectric disks, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 (2013).

DOI: 10.1109/tuffc.2013.2555

Google Scholar

[11] S. Li, L. Zheng, W. Jiang, R. Sahul, V. Gopalan, W. Cao, Characterization of full set material constants of piezoelectric materials based on ultrasonic method and inverse impedance spectroscopy using only one sample, J. Appl. Phys., 114 (2013).

DOI: 10.1063/1.4821107

Google Scholar

[12] N. Pérez, M.A.B. Andrade, R.C. Carbonari, J.C. Adamowski, F. Buiochi, Accurate determination of piezoelectric ceramic constants using a broadband approach, in Proc. of JASA Meetings on Acoustics 19 (2013).

DOI: 10.1121/1.4799296

Google Scholar

[13] J. Nelder, R. Mead, A simplex-method for function minimization, Comp. J. 7 (1965) 308-313.

Google Scholar