Electrical Properties of Porous Carbon Powders Synthesized by Nanocasting of Aniline in Mesoporous Silica

Article Preview

Abstract:

The use of aniline as carbon source has two advantages for the synthesis of carbon materials exhibiting conducting properties: the aromatic ring contributes to the graphitic character and the presence of nitrogen could work as n-dopant, decreasing the band gap of the carbon materials. These conditions contribute to improve their efficiency as electrocatalysts, for example in fuel cells. The objective of this work is to correlate physicochemical characteristics and electrical behavior of carbon samples prepared by nanocasting of aniline in mesoporous silica and its subsequent carbonization under controlled conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-138

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yang, K. Chiang and N. Burke: Catal. Today, Vol. 178 (2011), p.197.

Google Scholar

[2] M. Wissler: J. Power Sources, Vol. 156 (2006), p.142.

Google Scholar

[3] J. Lee, J. Kim and T. Hyeon: Adv. Mater., Vol 18 (2006), p. (2073).

Google Scholar

[4] K. Jurewicz, K. Babe≥, and H. Wachowska: Electrochim. Acta, Vol. 48 (2003), p.1491.

Google Scholar

[5] V. Strelko and V. Kuts: Theor Exp Chem, Vol. 35 (1999), p.315.

Google Scholar

[6] V.V. Strelko, V.S. Kuts and P.A. Thrower: Carbon, Vol. 38 (2000), p.1499.

Google Scholar

[7] W.Y. Wong, W.R.W. Daud, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh and E.H. Majlan: Intern. J. Hydrogen Energy, Vol. 38 (2013), p.9370.

DOI: 10.1016/j.ijhydene.2012.12.095

Google Scholar

[8] W-X. Liu, N. Liu, H-H. Song, X-H. Chen: New Carbon Materials, Vol. 26 (2011) , p.217.

Google Scholar

[9] A. Vinu, S. Anandan, C. Anand, P. Srinivasu, K. Ariga, T. Mori: Micropor. Mesopor. Mater. Vol. 109 (2008), p.398.

Google Scholar

[10] L. Sierra, M. Mesa, A. Ramirez, B. Lopez and J. -L. Guth. Studies in Surface Science and Catalysis. Vol. 154 (2004), p.573.

Google Scholar

[11] M. Mesa, L. Sierra, J. Patarin and J-L. Guth. Solid State Sci. Vol. 7 (2005), p.990.

Google Scholar

[12] J. Stejskal, I. Sapurina and M. Trchová: Prog. Polym. Sci. Vol. 35 (2010), p.1420.

Google Scholar

[13] P. Webb and C. Orr: Analytical methods in fine particle technology (Micromeritics Instrument Corporation. 1997).

Google Scholar

[14] Y. X. Guo, J.P. He, T. Wang, H.R. Xue, Y. Hu, G. Li, J. Tang and X. Sun: J. Power Sources, Vol. 196 (2011), p.9299.

Google Scholar

[15] A. Celzard, J.F. Marêché, F. Payot, G. Furdin, Carbon, Vol. 40 (2002), p.2801.

DOI: 10.1016/s0008-6223(02)00196-3

Google Scholar

[16] S. Hernández López, E. Vigueras Santiago, Chapter 11, pps 251 and 252. Soybean-Bioactive Copounds. Edited by Hany A. El-Shemy, ISBN 978-953-51-0977-8, Hard cover, 546 pages, Publisher: InTech, Published: February 20, (2013).

Google Scholar

[17] Z. R. Ismagilov, A. E. Shalagina, O. Y. Podyacheva, A. V. Ischenko, L. S. Kibis, A. I. Boronin, Y. A. Chesalov, D. I. Kochubey, A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, E. N. Tkachev: Carbon Vol. 47 (2009), p. (1922).

DOI: 10.1016/j.carbon.2009.02.034

Google Scholar

[18] M. Sevilla, L. Yu, T. P. Fellinger, A. Fuertes, M. M. Titirici. RSC Adv.: Vol. 3 (2013), p.9904.

Google Scholar