Effects of YMnO3 Addition on Phase Structure, Microstructure and Electrical Properties of (Na0.515K0.485)0.94Li0.06(Nb0.8Ta0.2)O3 Lead-Free Ceramics

Article Preview

Abstract:

The (1-x)[(Na0.515K0.485)0.94Li0.06(Nb0.8Ta0.2)O3]-xYMnO3 (x = 0, 0.005, 0.01, 0.015 and 0.02) lead-free ceramics were synthesized by solid-state reaction sintering method. It was found that the addition of YMnO3 affected on the grain size, phase structure and electrical properties of (Na0.515K0.485)0.94Li0.06(Nb0.8Ta0.2)O3 ceramics. The grain size decreased with increasing YMnO3 content (x ≥ 0.01) and led to poor densification. The ceramic doped with 0.5 mol% YMnO3 showed good electrical properties such as d33 = 195 pC/N, kp = 43.9 %, Tc = 292 °C, TOT = 35 °C, εr = 820 and rather low dielectric dissipation factor = 2.1%. This indicates that 0.5 mol% YMnO3 -doped (Na0.515K0.485)0.94Li0.06(Nb0.8Ta0.2)O3 piezoceramic is an alternative lead-free piezoelectric material for the development of piezoelectric devices working at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-170

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature. 432 (2004) 84-87.

DOI: 10.1038/nature03028

Google Scholar

[2] H. Birol, D. Damjanovic, N. Setter, Preparation and characterization of (K0. 5Na0. 5)NbO3 ceramics, J. Eur. Ceram. Soc. 26 (2006) 861-866.

DOI: 10.1016/j.jeurceramsoc.2004.11.022

Google Scholar

[3] Y. Guo, K.I. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties (Na0. 5 K0. 5)NbO3 – LiNbO3 ceramics, Appl. Phys. Lett. 85 (2004) 4121-4123.

DOI: 10.1063/1.1813636

Google Scholar

[4] ‏ Y. Saito, H. Takao, High performance lead-free piezoelectric ceramics in the (K, Na)NbO3– LiTaO3 solid solution system, Ferroelectrics. 338 (2006) 17-32.

DOI: 10.1080/00150190600732512

Google Scholar

[5] G. Teowee, K.C. Mccarthy, F.S. Mccarthy, T.J. Bukowski, D.G. Davis, D.R. Uhlmann, Dielectric and ferroelectric properties of sol-gel derived YMnO3 films, J. Sol-Gel Sci. Technol. 13 (1998) 899-902.

DOI: 10.1023/a:1008623323530

Google Scholar

[6] Z. Yang, X. Chao, C. Kang, R. Zhang, Low temperature sintering and properties of piezoelectric PZT–PFW–PMN ceramics with YMnO3 addition, Mater. Res. Bull. 43 (2008) 38-44.

DOI: 10.1016/j.materresbull.2007.02.020

Google Scholar

[7] P. Bomlai, P. Sinsap, S. Muensit, S.J. Milne, Effect of MnO on the phase development, microstructures, and dielectric properties of 0. 95Na0. 5K0. 5NbO3 – 0. 05LiTaO3 ceramics, J. Am. Ceram. Soc. 91 (2008) 624-627.

DOI: 10.1111/j.1551-2916.2007.02130.x

Google Scholar

[8] D.Y. Jeong, J. Ryu, D.S. Park, Effect of YMnO3 on the high-power and high-temperature piezoelectric characteristics of Pb(Zr0. 52Ti0. 48)O3 ceramics, Mater. Sci. Eng. B. 163 (2009) 88-92.

DOI: 10.1016/j.mseb.2009.05.012

Google Scholar

[9] P. Zheng, J.L. Zhang, Y.Q. Tan, C.L. Wang, Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics, Acta Mater. 60 (2012) 5022-5030.

DOI: 10.1016/j.actamat.2012.06.015

Google Scholar

[10] B.R. Li, X.H. Wang, L.T. Li, H. Zhou, X.T. Liu, X.Q. Han, Y.C. Zhang, X.W. Qi and X.Y. Deng, Dielectric properties of fine-grained BaTiO3 prepared by spark-plasma-sintering, Mater. chem. Phys. 83 (2004) 23-28.

DOI: 10.1016/j.matchemphys.2003.08.009

Google Scholar