A Facile Fynthesis of ZnS Nanostructures via Liquid-Solid Reactions

Article Preview

Abstract:

Zinc sulfide (ZnS) nanostructures are important materials for many technologies such as sensors, infrared windows, transistors, LED displays, and solar cells. However, many methods of synthesizing ZnS nanostructures are complex and require expensive equipment. In this study, a liquid-solid chemical reaction without surfactant was used to synthesize ZnS at room temperature. In addition, commercial grade zinc oxide (ZnO) particles were used as a precursor. The effect of the addition of acids and inorganic salts were investigated. The products were characterized by field emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results show that the nanoparticles of ZnS were obtained in hydrochloric acid and acetic acid addition. The diameters were in the range of 10 to 20 nm and 50 to 100 nm, respectively. In the case of a sodium chloride salt addition, a ZnS structure was obtained with a particle size of approximately 5 nm and a flake-like morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-187

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: From synthesis to applications, Prog. Mater. Sci. 56 (2011) 175-287.

DOI: 10.1016/j.pmatsci.2010.10.001

Google Scholar

[2] S. Wang, D. Yu, G. Wu, J. Guo, C. Lei, A new fluorescent film sensor for Pb(II) ions developed by simulating bio-mineralization process synthesizing of ZnS/CS nanocomposite, Mater. Sci. Eng. B. 176 (2011) 873-877.

DOI: 10.1016/j.mseb.2011.05.002

Google Scholar

[3] Z.H. Chen, H. Tang, X. Fan, J.S. Jie, C.S. Lee, S.T. Lee, Epitaxial ZnS/Si core–shell nanowires and single-crystal silicon tube field-effect transistors, J. Cryst. Growth. 310 (2008) 165-170.

DOI: 10.1016/j.jcrysgro.2007.09.047

Google Scholar

[4] D. A. Reddy, G. Murali, N. M. Rao, R.P. Vijayalakshmi, B.K. Reddy, Synthesis and Optical Properties of Annealed Cr Doped ZnS Nanoparticles, Adv. Mat. Res. 678 (2013) 163-167.

DOI: 10.4028/www.scientific.net/amr.678.163

Google Scholar

[5] Q. F. Han, G. Z. Diao, X. H. Liu, X. Wang, The Preparation and Photocatalytic Activity of Ni-Doped ZnS Nanoparticles, Adv. Mat. Res. 148 – 149 (2010) 845-848.

DOI: 10.4028/www.scientific.net/amr.148-149.845

Google Scholar

[6] Z. Y. Zhong, E. S. Cho, S. J. Kwon, Characterization of the ZnS thin film buffer layer for Cu(In, Ga)Se2 solar cells deposited by chemical bath deposition process with different solution concentrations, Mater. Chem. Phys. 135 (2012) 287-292.

DOI: 10.1016/j.matchemphys.2012.03.090

Google Scholar

[7] Z. Cao, L. Sun, X. Cao, Y. He, Preparation and Characterization of Helical Structure ZnS by Solvothermal Method, Adv. Mat. Res. 233 - 235 (2011) 1954-(1957).

Google Scholar

[8] X. Yan, E. Michael, S. Komarneni, J. R. Brownson, Z. -F. Yan, Microwave- and conventional-hydrothermal synthesis of CuS, SnS and ZnS: Optical properties, Ceram. Int. 39 (2013) 4757-4763.

DOI: 10.1016/j.ceramint.2012.11.062

Google Scholar

[9] M. Salavati-Niasari, F. Davar, M. Mazaheri, Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis(salicylidene)zinc(II)], J. Alloy. Compd. 470 (2009) 502-506.

DOI: 10.1016/j.jallcom.2008.03.048

Google Scholar

[11] P.K. Ghosh, U.N. Maiti, S. Jana, K.K. Chattopadhyay, Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique, Appl. Surf. Sci. 253 (2006) 1544-1550.

DOI: 10.1016/j.apsusc.2006.02.037

Google Scholar

[12] W. Chen, X. Xu, P. Dai, Y. Chen and Z. Jiang, Properties of ZnS Thin Films Prepared by CBD under Different Concentration of Complexing Agent, Adv. Mat. Res. 472 - 475 (2012) 1572-1576.

DOI: 10.4028/www.scientific.net/amr.472-475.1572

Google Scholar

[13] S.Y. Lee, Y.H. Shin, Y. Kim, S. Kim, S. Ju, Thermal quenching behavior of emission bands in Eu-doped ZnS nanowires, J. Lumin. 131 (2011) 1336-1339.

DOI: 10.1016/j.jlumin.2011.03.026

Google Scholar

[14] Y. -y. SHE, J. YANG, K. -q. QIU, Synthesis of ZnS nanoparticles by solid-liquid chemical reaction with ZnO and Na2S under ultrasonic, T. Nonferr. Metal. Soc. 20 (2010) s211-s215.

DOI: 10.1016/s1003-6326(10)60041-6

Google Scholar

[15] H. Z. Zeng, K. Q. Qiu, Y. Y. Du, W. Z. Li, A new way to synthesize ZnS nanoparticles, Chinese. Chem. Lett. 18 (2007) 483-486.

DOI: 10.1016/j.cclet.2007.02.002

Google Scholar

[16] J. Duan, X. Huang, H. Wang, Q. Zhong, F. Sun, X. He, Synthesis of porous ZnO micro-flakes via an integrated autoclave and pyrolysis process, Mater. Chem. Phys. 106 (2007) 181-186.

DOI: 10.1016/j.matchemphys.2007.05.034

Google Scholar

[17] L. Wu, Y. Wu, Y. Lu, Self-assembly of small ZnO nanoparticles toward flake-like single crystals, Mater. Res. Bull. 41 (2006) 128–133.

DOI: 10.1016/j.materresbull.2005.07.031

Google Scholar