Multi Wavelength Generated by PANDA Ring Resonator for Multi User DWDM WiMAX Network

Article Preview

Abstract:

This paper proposed a scheme for multi channels THz frequency generation by using a coupled nonlinear resonator device known as PANDA ring. Dipole gold nanoantenna coupled to active plasmonic devices was used at THz for WiMAX network applications. Multiple Dark-Bright soliton conversion control propagating within a modified PANDA ring resonator to generated dense wavelength division multiplexing (DWDM).The system results illustrated multi wavelength Dark-Bright soliton generation and the frequency obtained in multi THz frequency to broadcast the data to transmitter for all receivers. In this approach, the muti THz frequency provides a reliable frequency band for the future planar lightwave circuit (PLCs) based on DWDM optical link with Wi-Fi, WiMAX, Ubiquitous, and many applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

471-478

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mitatha, R. Putthacharoen, P.P. Yupapin, THz frequency bands generation for Radio-over-Fiber systems, Optik 123 (2012) 974– 977.

DOI: 10.1016/j.ijleo.2011.07.013

Google Scholar

[2] IEEE standard for local and metropolitan area networks part 16: air interface for fixed broadband wireless access systems, IEEE Std 802. 16-2004, 2004 (Revision of IEEE Std 802. 16-2001).

DOI: 10.1109/ieeestd.2004.226664

Google Scholar

[3] IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems amendment 2: physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1, IEEE Std 802. 16e-2005 and IEEE Std 802. 16-2004/Cor 1-2005, 2005 (Amendment and Corrigendum to IEEE Std 802. 16-2004).

DOI: 10.1109/ieeestd.2006.99107

Google Scholar

[4] IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems, IEEE Std 802. 16TM-2009 IEEE Standard for Local and metropolitan area networks, (2009).

DOI: 10.1109/ieeestd.2004.226664

Google Scholar

[5] Andrews, J., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding Broadband Wireless Net-working. Upper Saddle River, NJ: Prentice Hall.

Google Scholar

[6] F. Xiong, W. D. Zhong, and H. Kim, A broadcast-capable WDM passive optical network using offset polarization multiplexing, J. Lightwave Technol. 30, 2329-2336 (2012).

DOI: 10.1109/jlt.2012.2196756

Google Scholar

[7] E. Wong, Next-Generation Broadband Access Networks and Technologies, J. Lightwave Technol. 30, 597-608 (2012).

DOI: 10.1109/jlt.2011.2177960

Google Scholar

[8] Z. A. El-Sahn, J. M. Buset, and David V. Plant, Overlapped-subcarrier multiplexing for WDM passive optical networks: experimental verification and mathematical analysis, J. Lightwave Technol. 30, 754-763 (2012).

DOI: 10.1109/jlt.2011.2180510

Google Scholar

[9] R.C. Myers, M.H. Mikkelsen, J.M. Tang, A.C. Gossard, M.E. Flatte, and D.D. Awschalom, Zero-field optical manipulation of magnetic ions in semiconductors, Nat. Mater. 7, 203-208 (2008).

DOI: 10.1038/nmat2123

Google Scholar

[10] D.F. Gordon, B. Hafizi, and A. Ting, Nonlinear conversion of photon spin to photon orbital angular momentum, Opt. Lett. 34, 3280-3282 (2009).

DOI: 10.1364/ol.34.003280

Google Scholar

[11] O. Ozatay, P.G. Gowtham, K.W. Tan, J.C. Read, K.A. Mkhoyan, M.G. Thomas, G.D. Fuchs, P.M. Braganca, E.M. Ryan, K.V. Thadan, J. Silcox, D.C. Ralph, and R.A. Buhrman, Sidewall oxide effects on spin-torque and magnetic-field-induced reversal characteristics of thin-film nanomagnets, Nat. Mater. 7, 567-573 (2008).

DOI: 10.1038/nmat2204

Google Scholar

[12] K. Meyl, Task of the introns, cell communication explained by field physics, J. Cell Commun. Signal. 6, 53–58 (2012).

DOI: 10.1007/s12079-011-0152-0

Google Scholar

[13] G. Lampel, Nuclear dynamic polarization by optical electronic saturation and optical pumping in semiconductors, Phys. Rev. Lett. 20, 491-493 (1986).

DOI: 10.1103/physrevlett.20.491

Google Scholar

[14] N. Thammawongsa, N. Moongfangklang, S. Mitatha, and P. P. Yupapin, Novel nano-antenna system design using photonic spin in a PANDA ring, PIER Lett. 31, 75-87 (2012).

DOI: 10.2528/pierl12012706

Google Scholar

[15] Thanawat Phatharaworamet, Chat Teeka, Rangsan Jomtarak, Somsak Mitatha, and Preecha P. Yupapin, Random Binary Code Generation Using Dark-Bright Soliton Conversion Control Within a PANDA Ring Resonator, JOURNAL OF LIGHTWAVE TECHNOLOGY, 0733-8724/$26. 00 © 2010 IEEE.

DOI: 10.1109/jlt.2010.2062488

Google Scholar

[16] S. Glomglome, I. Srithanachai, C. Teeka, S. Mitatha, S. Niemcharoen, and P. P. Yupapin, Optical spin generated by a soliton pulse in an add–drop filter for optoelectronic and spintronic, Opt. Laser Technol. 44, 1294–1297 (2012).

DOI: 10.1016/j.optlastec.2011.11.052

Google Scholar

[17] K. Sarapat, N. Sangwara, K. Srinuanjan, P.P. Yupapin, and N. Pornsuwancharoen, Novel dark–bright opticalsolitons conversion system and power amplification, Opt. Eng. 48, 045004-7 (2009).

DOI: 10.1117/1.3121563

Google Scholar

[18] Rakic, A. D., Djuriic, A. B., Elazar, J. M., and Majewski, M. L., Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt., vol. 37, p.5271, (1998).

DOI: 10.1364/ao.37.005271

Google Scholar