Giant Magnetoresistance in FeMn/NiCoFe/Cu/NiCoFe Spin Valve Prepared by Opposed Target Magnetron Sputtering

Article Preview

Abstract:

The giant magnetoresistance (GMR) effect in FeMn/NiCoFe/Cu/NiCoFe spin valve prepared by dc opposed target magnetron sputtering is reported. The spin valve thin films are characterized by Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and magnetoresistance ratio measurements. All measurements are performed in room temperature. The inserted 45 mm thickness FeMn layer to the NiCoFe/Cu/NiCoFe system can increase the GMR ratio up to 32.5%. The coercive field to be increased is compared with different FeMn layer thickness. Furthermore, the coercive field (Hc) decreases with increasing FeMn layer thickness. Magnitude of coercive field is 0.1 T, 0.09 T and 0.08 T for FeMn layer thickness is 30 nm, 45 nm and 60 nm, respectively. The FeMn layer is used to lock the magnetization in the ferromagnetic layer through the exchange anisotropy. This paper will describe the development of a GMR spin valve and its magnetic properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-89

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Grundberg and K. Takanashi, Spintronics: towards devices with lower energy consumption, Proceeding of 10th IEEE International Conference on Nanotechnology Joint Symposium with Nano Korea, KINTEX– Korea, (2010).

DOI: 10.1109/nano.2010.5698059

Google Scholar

[2] J. Daughton, J. Brown, R. Beech, A. Pohm, and W. Kude, Magnetic Field Sensors Using GMR Multilayer, IEEE Trans. Magn. 30 (1994) 4608 - 4610.

DOI: 10.1109/20.334164

Google Scholar

[3] C. Reig, M.D.C. Beltran, and D.R. Munoz, Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Application in Electrical Current Sensing, Sensors. 9 (2009) 7919-7942.

DOI: 10.3390/s91007919

Google Scholar

[4] S. Tehrani, E. Chen, M. Durlam,T. Zhu, and H. Goronlun, High Density Nonvolatile Magnetoresistive RAM, Proceeding International Electron Devices Meeting (IEDM'96), December 8-11, (1996).

DOI: 10.1109/iedm.1996.553152

Google Scholar

[5] P. Clarke, Non-volatile RAM designed with magnetic spin valves, Electronic Engineering Times; July 20, 1998; 1017. p.59.

Google Scholar

[6] R. Wood, Future hard disk drive systems, J. Magn. Magn. Mater. 321 (2009) 555-561.

Google Scholar

[7] T. Shinjo. (2009). Nanomagnetism and Spintronics, Elsevier, Oxford, pp.1-13.

Google Scholar

[8] B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, and D. Mauri, Giant Magnetoresistive in Soft Ferromagnetic Multilayers, Phys. Rev. B. 43 (1991) 1297-1300.

DOI: 10.1103/physrevb.43.1297

Google Scholar

[9] Berkowitz, A. E. & Takano, K. Exchange anisotropy - a review. J. Magn. Magn. Mater. 200 (1999) 552-570.

Google Scholar

[10] M. Naoe, Y. Hoshi, S. Yamanaka, Facing Targets Type of Sputtering Method for Deposition of Magnetic Metal Films at Low Temperature and High Rate, IEEE Trans. Magn., MAG-18 (1980) 646.

DOI: 10.1109/tmag.1980.1060683

Google Scholar

[11] M. Djamal, Ramli, Thin Film of Giant Magnetoresistance (GMR) Material Prepared by Sputtering Method, Advanced Materials Research, 770 (2013) 1-9.

DOI: 10.4028/www.scientific.net/amr.770.1

Google Scholar

[12] Ramli, M. Djamal, F. Haryanto, S. Viridi, Khairurrijal, Giant Magnetoresistance in (Ni60Co30Fe10/Cu) Trilayer Growth by Opposed Target Magnetron Sputtering, Advanced Materials Research, 535-537 (2012) 1319-1322.

DOI: 10.4028/www.scientific.net/amr.535-537.1319

Google Scholar

[13] P.B. Barna, M. Adamanik, Fundamental Structure Forming Phenomena of Polycrystalline Films and The Structure Zone Models, Thin Solid Films, 317 (1998) 27.

DOI: 10.1016/s0040-6090(97)00503-8

Google Scholar

[14] M. D. Stiles, R. D. McMichael, Coercivity in exchange-bias bilayers, Phys. Rev. B 63 (2001) 064405.

Google Scholar

[15] Q. Zhan, W. Zhang, K.M. Krishnan, Antiferromagnetic layer thickness dependence of the magnetization reversal in the epitaxial MnPd/Fe exchange bias system, Phys. Rev. B 83 (2011) 094404.

DOI: 10.1103/physrevb.83.094404

Google Scholar