[1]
A.A. Radwan, H.M. El-Bakry, H.M. El-Hadad, A New Expert System for Repository Diseases by Using Neural Networks, Recent Researches in Applied Informatics WSEAS (2011) 296-306.
Google Scholar
[2]
A.A. Munot and K.K. Kumar, Long range prediction of Indian summer monsoon rainfall, Journal Earth System Science, 116-1 (2007) 73–79.
DOI: 10.1007/s12040-007-0008-4
Google Scholar
[3]
R. Lawrence, Using NN to Forecast Stock Market Prices, Univ of Manitoba (1997).
Google Scholar
[4]
H.A. Abbass, An evolutionary artificial neural networks approach for breast cancer diagnosis, Artificial Intelligence in Medicine, 25-3 (2002) 265-281.
DOI: 10.1016/s0933-3657(02)00028-3
Google Scholar
[5]
L.G. Esteban, F.G. Fernandez, P. Palacios and B.G. Rodrigo, Use of ANN as a predictive method to determine moisture resistance of particle and fiber boards under cyclic testing conditions, (UNE-EN 321) Wood and Fiber Science, 42-3 (2010) 1-11.
Google Scholar
[6]
D.F. Cook, C.C. Chiu, Predicting Internal Bond Strength of Particleboard utilizing a radial basis function Neural Network, Eng Application of Artificial Intelligence, 10-2 (1997) 171-177.
DOI: 10.1016/s0952-1976(96)00068-1
Google Scholar
[7]
T.M. Young, L.B. Shaffer, F.M. Guess, H. Bensmail, R.V. León, A comparison of multiple linear regression and quantile regression for modeling the internal bond of medium density fiberboard, Forest Products Journal 58-4 (2008).
Google Scholar
[8]
G. Painter, H. Budman and M. Pritzker, Prediction of oriented strand board properties from mat formation and compression operating conditions. Part 2: MOE prediction and process optimization, Wood Science Technology Springer 40 (2006) 291–307.
DOI: 10.1007/s00226-005-0050-9
Google Scholar
[9]
F.G. Fernandez, L.G. Esteban, P.D. Palacious, N. Navarro, M. Conde, Prediction of Std Particleboard Mech properties utilizing an ANN & subsequent comparison with a multivariate regression model, Investigacion Agraria: Sistemas y Recursos Forestales, 17-2 (2008).
DOI: 10.5424/srf/2008172-01033
Google Scholar
[10]
D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Massachusetts: Addison-Wesley (1989).
Google Scholar
[11]
K.A. De Jong, Analysis of the behavior of a class of genetic adaptive systems, Ph.D. Dissertation, Dept of Computer and Comm Sciences, Univ of Michigan, Ann Arbor, MI, (1975).
Google Scholar
[12]
T. Back, Self Adaption in Genetic Algorithms, Towards a Practice of Autonomous Systems, MIT Press (1992) 263-271.
Google Scholar
[13]
L. Davis, Adapting operator probabilities in genetic algorithms, J. David Schaffer ed., Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufman Publishers, Inc., (1989) 61-69.
Google Scholar
[14]
N. Andre, H.W. Choo, S.Y. Baek, M.K. Jeong, T.M. Young, Prediction of internal bond strength in a medium density fibreboard process using multivariate statistical methods and variable selection, Wood Science Technology, Springer 42 (2008).
DOI: 10.1007/s00226-008-0204-7
Google Scholar
[15]
T.M. Young, Predictive Of The Physical Properties Of Wood Composites Using Genetic Algo, Wood Utilization Research Project, Univ of Tennessee Forest Product Center, (2004).
Google Scholar
[16]
F. Sh Ismail, N. Abu Bakar, N.E. Abdul Khalid and R. Mamat, Optimizing Oil Palm Fiberboard Properties Using Neural Network, IEEE Conference on Data Mining and Optimization, (2011) 271-275.
DOI: 10.1109/dmo.2011.5976540
Google Scholar