The Analysis of the Phase Noise of the Closed-Loop Driver Circuit in Micromechanical Gyroscope Based on the Phase-Locked Principle

Article Preview

Abstract:

Compared with the closed-loop drive circuit in micromechanical gyroscope of AGC principle, the closed-loop driver circuit based on the phase locked principle can overcome its shortcomings which cannot control the frequency characteristics of the output signal, reducing the frequency deviation and the frequency jitter of the output signal, and shortening the settling time of the closed-loop drive system. In this paper, the noise of the closed-loop phase drive circuit based on phase locked principle is analyzed and deduced its phase noise expressions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

526-529

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Acar, A. M. Shkel. An Approach for Increasing Drive-Mode Bandwidth of MEMS Vibratory Gyroscopes. Journal of Micro Electro Mechanical Systems. 2005, 14(3): 520~528.

DOI: 10.1109/jmems.2005.844801

Google Scholar

[2] D. Tsai, W. Fang. Design and Simulation of a Dual-Axis Sensing Decoupled Vibratory Wheel Gyroscope. Sensors and Actuators, A: Physical. 2006, 126(1): 33-40.

DOI: 10.1016/j.sna.2005.09.004

Google Scholar

[3] B. Xiong, L. Che, Y. Wang. A Novel Bulk Micromachined Gyroscope with Slots Structure Working at Atmosphere. Sensors and Actuators, A: Physical. 2003, 107: 137~145.

DOI: 10.1016/s0924-4247(03)00296-6

Google Scholar

[4] K. Tanaka, Y. Mochida, M. Sugimoto, K. Moriya, T. Hasegawa, K. Atsuchi, K. Ohwada. A Micromachined Vibrating Gyroscope. Sensors and Actuators, A: Physical. 1995, 50(1-2): 111-115.

DOI: 10.1016/0924-4247(96)80093-8

Google Scholar

[5] Y. S. Oh, B. L. Lee, S. S. Baek, H. S. Kim, J. G. Kim, S. G. Kang, and C. M. Song. A Tunable Vibratory Microgyroscope. Sensors and Actuators, A: Physical. 1998, 64(1): 51-56.

DOI: 10.1016/s0924-4247(98)80057-5

Google Scholar

[6] J. S. Yang. A Piezoelectric Gyroscope Based on Extensional Vibrations of Rods. International Journal of Applied Electromegnetics. 2003, 17(4): 289~300.

DOI: 10.3233/jae-2003-266

Google Scholar

[7] X. Wu, W. Chen, X. Zhao. Structure Design of Levitating Coil in Micro-machined Gyroscope with an Electro-magnetic Levitated Rotor. Journal of Shanghai Jiaotong University. 2005, 23(1): 125~128.

Google Scholar

[8] W. A. Clark, R. T. Howe, R. Horowitz. Surface Micromachined Z-axis Vibratory Rate Gyroscope. Tech. Dig. Solid-state Sensors and Actuators Workshop. Los Angeles, United States, 1996: 283-287.

DOI: 10.31438/trf.hh1996.64

Google Scholar

[9] S. E. Alper, I. E. Ocak, T. Akin. Ultra-Thick and High-Aspect-Ratio Nickel Microgyroscope Using EFAB TM Multi-Layer Additive Electroforming. MEMS, Istanbul, Turkey, 2006: 670-673.

DOI: 10.1109/memsys.2006.1627888

Google Scholar