Influence of High-Temperature on Polycarboxylate Superplasticizer in Aluminous Cement Based Fibre Composites

Article Preview

Abstract:

This paper summarizes the results of an experimental program aimed at investigating of the mechanical properties of composites based on aluminous cement for high-temperature applications and deal with the influence of high-thermal loading on polycarboxylate superplasticizing (PCSP) additive contained in the composite. The intent of this examination was caused by the suspicion that the action of high-temperatures can lead to burnout of the PCSP additive and thus subsequently affecting the mechanical properties of the final composite. Silica composites based on Portland cement and silica aggregates are not able to resist the effects of high-temperatures [1]. For high-temperature composites was therefore used aluminous cement Secar®71 (Lafarge S.A.) in combination with crushed basalt aggregates of fraction 0/4 and 2/5 mm. The flexural strength was greatly improved thanks combinations of basalt fibers with lengths of 6.35 mm and 12.7 mm. The values ​​of flexural strength and compression strength were investigated on samples dried at temperature 105 °C or loaded for 180 minutes with high-temperature of 600 °C or 1 000 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-129

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Vejmelková, E, Černý, R.: Thermal Properties of PVA-Fiber Reinforced Cement Composites at High Temperatures. In Material and Environmental Science, Building Engineering, Biomedical and Bioinformatics Technologies. Uetikon-Zurich: Trans Tech Publications, 2013, pp.45-49.

DOI: 10.4028/www.scientific.net/amm.377.45

Google Scholar

[2] Keppert, M., Vejmelková, E., Černý, R., Švarcová, S., Bezdička, P.: Microstructural changes and residual properties of fiber reinforced cement composites exposed to elevated temperatures. Cement Wapno Beton. 2012, vol. 17/79, no. 2, pp.77-89.

Google Scholar

[3] Information on http: /www. secar. net/-Brochures.

Google Scholar

[4] Sovják, R., Vavřiník, T., Máca, P., Zatloukal, J., Konvalinka, P., et al.: Experimental Investigation of Ultra-high Performance Fiber Reinforced Concrete Slabs Subjected to Deformable Projectile Impact. In Procedia Engineering. Amsterdam: Elsevier Science Publishers B. V., 2013, pp.120-125.

DOI: 10.1016/j.proeng.2013.09.021

Google Scholar

[5] Hewlett P. C.: Lea's chemistry of cement and concrete. 4th ed. Oxford: Elsevier, 2004, Chapter 13, pp.713-782. ISBN 07-506-6256-5.

Google Scholar

[6] Colombo C., Vergani L., Burman M.: Static and fatique characterisation of new basalt fibre reinforced composites, in: Composite Structures 94 (2012) 1165-1174.

DOI: 10.1016/j.compstruct.2011.10.007

Google Scholar

[7] Fornůsek, J., Konvalinka, P., Cairns, J. J.: Numerical Analysis of the Influence of Head Diameter on the Breakout Capacity of Shallow Headed Studs. In Proceedings of the 50th Annual Conference on Experimental Stress Analysis. Praha: Czech Technical University in Prague, 2012, pp.73-80.

Google Scholar

[8] Keppert, M., Pavlík, Z., Tydlitát, V., Volfová, P., Švarcová, S., et al.: Properties of municipal solid waste incineration ashes with respect to their separation temperature. Waste Management & Research. 2012, vol. 30, no. 10, pp.1041-1048.

DOI: 10.1177/0734242x12448513

Google Scholar

[9] Information on http: /www. basaltex. cz/cedic/cedic_charakteristika_cz. htm.

Google Scholar

[10] Sovják, R., Vogel, F., Beckmann, B.: Triaxial Compressive Strength of Ultra High Performance Concrete. Acta Polytechnica. 2013, vol. 53, no. 6, pp.901-905. ISSN 1210-2709.

DOI: 10.14311/ap.2013.53.0901

Google Scholar

[11] Information on http: /www. academia. edu/4294783/EFFECT_OF_SIKA_VISCOCRETE_ON_ PROPERTIES_OF_CONCRETE.

Google Scholar