[1]
P. Máca, R. Sovják, T. Vavřiník, Experimental Investigation of Mechanical Properties of UHPFRC, Procedia Engineering. 65 (2013) 14-19.
DOI: 10.1016/j.proeng.2013.09.004
Google Scholar
[2]
P. Aïtcin, High performance concrete. CRC Press (2011).
Google Scholar
[3]
P. Maca, J. Zatloukal, P. Konvalinka, Development of Ultra High Performance Fiber Reinforced Concrete mixture, (2012) 861-866.
DOI: 10.1109/isbeia.2012.6423015
Google Scholar
[4]
P. Máca, R. Sovják, P. Konvalinka, Mix Design of UHPFRC and its Response to Projectile Impact, Int.J. Impact Eng. (2013).
DOI: 10.1016/j.ijimpeng.2013.08.003
Google Scholar
[5]
P. Máca, R. Sovják, P. Konvalinka, Mixture Design and Testing of Ultra High Performance Fiber Reinforced Concrete, Malaysian Journal of Civil Engineering. 25 Special Issue (1) (2013) 74-87.
Google Scholar
[6]
M. Collepardi, The new concrete. Grafiche Tintoretto (2006).
Google Scholar
[7]
R. Sovják, F. Vogel, B. Beckmann, Triaxial compressive strength of ultra high performance concrete, Acta Polytechnica. 53 (2013).
DOI: 10.14311/ap.2013.53.0901
Google Scholar
[8]
O. Holčapek, F. Vogel, T. Vavřiník, M. Keppert, Time Progress of Compressive Strength of High Performance Concrete, Applied Mechanics and Materials. 486 (2014) 167-172.
DOI: 10.4028/www.scientific.net/amm.486.167
Google Scholar
[9]
P. Maca, D. Jandekova, P. Konvalinka, The influence of metakaolin addition on the scaling of concrete due to frost action, CEMENT WAPNO BETON. 19 (2014) 1.
Google Scholar
[10]
E. Vejmelková, P. Konvalinka, P. Padevět, L. Kopecký, M. Keppert, R. Černý, Mechanical, Hygric, and Thermal Properties of Cement-Based Composite with Hybrid Fiber Reinforcement Subjected to High Temperatures, Int.J. Thermophys. 30 (2009).
DOI: 10.1007/s10765-009-0609-z
Google Scholar
[11]
E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý, Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material, Cement and Concrete Composites. 34 (2012) 55-61.
DOI: 10.1016/j.cemconcomp.2011.09.018
Google Scholar
[12]
P. Máca, R. Sovják, Resistance of ultra high performance fibre reinforced concrete to projectile impact, Structures Under Shock and Impact. 126 (2012) 261.
DOI: 10.2495/su120231
Google Scholar
[13]
R. Sovják, T. Vavřiník, P. Máca, J. Zatloukal, P. Konvalinka, Y. Song, Experimental Investigation of Ultra-high Performance Fiber Reinforced Concrete Slabs Subjected to Deformable Projectile Impact, Procedia Engineering. 65 (2013) 120-125.
DOI: 10.1016/j.proeng.2013.09.021
Google Scholar
[14]
J. Litos, P. Konvalinka, Modification Additives and Their Influence on Volume Changes of Fresh Cement Pastes. International Proceedings of Computer Science & Information Technology. 28 (2012).
Google Scholar
[15]
A.B. Hossain, J. Weiss, Assessing residual stress development and stress relaxation in restrained concrete ring specimens, Cement and Concrete Composites. 26 (2004) 531-540.
DOI: 10.1016/s0958-9465(03)00069-6
Google Scholar
[16]
K. Wiegrink, S. Marikunte, S.P. Shah, Shrinkage cracking of high-strength concrete, ACI Mater.J. 93 (1996).
Google Scholar
[17]
H.T. See, E.K. Attiogbe, M.A. Miltenberger, Shrinkage cracking characteristics of concrete using ring specimens, ACI Mater.J. 100 (2003).
DOI: 10.14359/12625
Google Scholar