Comparison of Two Different Modes of Inverse Analysis Used for Determination of Moisture Diffusivity of Building Materials

Article Preview

Abstract:

This paper gives a brief overview of two different approaches within the inverse analysis used for determination of moisture diffusivity of porous building materials. The inverse methods are represented by Boltzman-Matano approach and genetic algorithms. Both methods are described in this paper and its application is demonstrated on a simple laboratory experiment. Finally, the results of both treatments are compared together and short discussion is given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-53

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kočí, V. Kočí, K. Ďurana, J. Maděra, R. Černý, Determination of Moisture-Dependent Moisture Diffusivity Using Smoothed Experimental Data, 11th International Conference of Numerical Analysis and Applied Mathematics 2013. New York: American Institute of Physics, 2013, p.2038-(2041).

DOI: 10.1063/1.4912632

Google Scholar

[2] Z. Pavlík, R. Černý, Determination of Moisture Diffusivity as a Function of Both Moisture and Temperature, International Journal of Thermophysics, vol. 33(8), 2012, pp.1704-1714.

DOI: 10.1007/s10765-011-1006-y

Google Scholar

[3] Z. Pavlík, J. Mihulka, M. Pavlíková, L. Fiala, R. Černý, Moisture Diffusivity Function Determined Using Inverse Analysis of Moisture Profiles Measured by TDR Technique, Aquametry 2010, Weimar: MFPA, 2010, pp.153-164.

Google Scholar

[4] J. Carmeliet, H. Hens, S. Roels, O. Adan, H. Brocken, H. - et al. Determination of the Liquid Water Diffusivity from Transient Moisture Transfer Experiments, Journal of Thermal Envelope & Building Science, vol. 27(4), 2004, pp.277-305.

DOI: 10.1177/1097196304042324

Google Scholar

[5] H. J. Bremermann, Optimization through evolution and recombination, Self-Organizing Systems, M. C. Yovits et al., Eds. Washington, DC: Spartan, (1962).

Google Scholar

[6] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Piscataway, NJ: IEEE Press, (1995).

Google Scholar

[7] H. J. C. Barbosa, H. S. Bernardino, Genetic Programming in Civil, Structural and Environmental Engineering, Computational Technology Reviews, vol. 4, 2011, pp.115-145.

DOI: 10.4203/ctr.4.5

Google Scholar

[8] J. R. Koza, Genetic programming: On the Programming of Computers by Means of Natural Selection, MIT Press, (1992).

Google Scholar

[9] O. Hrstka, A. Kučerová, Improvements of real coded genetic algorithms based on differential operators preventing premature convergence, Advances in Engineering Software, vol. 35(3-4), 2004, pp.237-246.

DOI: 10.1016/s0965-9978(03)00113-3

Google Scholar

[10] J. Kočí, J. Žumár, Z. Pavlík, R. Černý, Application of Genetic Algorithm for Determination of Water Vapor Diffusion Parameters of Building Materials, Journal of Building Physics, vol. 35 (3), 20102, pp.238-250.

DOI: 10.1177/1744259111418330

Google Scholar

[11] Z. Pavlík, J. Žumár, M. Pavlíková, R. Černý, A Boltzmann Transformation Method for Investigation of Water Vapor Transport in Building Materials. Journal of Building Physics, vol. 35, 2012, pp.213-223.

DOI: 10.1177/1744259111418329

Google Scholar

[12] C. Matano, On the Relation between the Diffusion Coefficient and Concentration of Solid Metals. Jap. J. Phys., Vol. 8, 1933, pp.109-113.

Google Scholar

[13] J. Drchalová, R. Černý, Non-Steady-State Methods for Determining the Moisture Diffusivity of Porous Materials, International Communications in Heat and Mass Transfer, vol. 25, 1998, pp.109-116.

DOI: 10.1016/s0735-1933(97)00142-5

Google Scholar

[14] J.H. Holland, Adaptation in natural and artificial systems. Internal report. Ann Arbor, MI: University of Michigan; (1975).

Google Scholar

[15] E.D. Goldberg, Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley; (1989).

Google Scholar

[16] Z. Michalewicz, Genetic algorithms + data structures = evolution programs, 3rd ed. Berlin: Springer; (1996).

Google Scholar

[17] Jerman, M. - Keppert, M. - Výborný, J. - Černý, R. Hygric, thermal and durability properties of autoclaved aerated concrete, In: Construction and Building Materials. 2013, vol. 41, no. 1, pp.352-359.

DOI: 10.1016/j.conbuildmat.2012.12.036

Google Scholar