[1]
D.R. Salgado, F.J. Alonso, Tool wear detection in turning operations using singular spectrum analysis, J. Mater. Process. Technol., 171 (2006) 451 – 458.
DOI: 10.1016/j.jmatprotec.2005.08.005
Google Scholar
[2]
F.J. Alonso, D.R. Salgado, Analysis of the structure of the vibration signals for tool wear dectection, Mech. Syst. Signal Pr., 22 (2008) 735-748.
DOI: 10.1016/j.ymssp.2007.09.012
Google Scholar
[3]
K.A. Risbood, U.S. Dixit, A.D. Sahasrabudhe, Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process, J. Mater. Process. Technol., 132 (2003) 203 – 214.
DOI: 10.1016/s0924-0136(02)00920-2
Google Scholar
[4]
Y. Zeng, Forssberg, Monitoring of grinding parameters by vibration signal measurement A primary application, Miner. Eng., 7 (1994) 495-501.
DOI: 10.1016/0892-6875(94)90162-7
Google Scholar
[5]
N.K. Mehta, P.C. Pandey, G. Chakravarti, An investigation of tool wear and the vibration spectrum in milling, Wear, 91 (1983) 219 – 234.
DOI: 10.1016/0043-1648(83)90256-9
Google Scholar
[6]
S. Orhan, A.O. Er, N. Camusu, E. Aslan, Tool wear evaluation by vibration analysis during end milling of AISI D3 cold work tool steel with 35 HRC hardness, NDT and E Int., 40 (2007) 121 – 126.
DOI: 10.1016/j.ndteint.2006.09.006
Google Scholar
[7]
I.A. Mahfouz, Drill wear detection and classification using vibration signals and artificial neural network, Int. J. of Mach. Tools Mf., 43 (2003) 707-720.
DOI: 10.1016/s0890-6955(03)00023-3
Google Scholar
[8]
T.I. El-Wardany, D. Gao, M.A. Elbestawi, Tool condition monitoring in drilling using vibration signature analysis, Int. J. of Mach. Tools Mf., 36 (1996) 687-711.
DOI: 10.1016/0890-6955(95)00058-5
Google Scholar
[9]
E.M. McCollogh, Economics of Multitool Lathe Operations. Trrans. ASME, J. Engng for Ind., 1963, 402-404.
Google Scholar
[10]
A. Zompi, R. Levi, G.L. Ravignani, Multi-Tool Machining Analysis Part 1 Tool Failure Patterns and Implications. Trans. ASME J. Engng for Ind., 1979, 101, 230-236.
DOI: 10.1115/1.3439500
Google Scholar
[11]
G.L. Ravignani, A. Zompi, R. Levi, Multi-Tool Machining Analysis Part 2 Economic Evaluation in view of Tool Life Scatter. Trans. ASME J. Engng for Ind., 1979, 101, 237-240.
DOI: 10.1115/1.3439501
Google Scholar
[12]
A.K. Sheikh, L.A. Kendall, S.M. Pandit, Probabilistic Optimization of Multitool Machining Operations. Trans. ASME J. Engng for Ind., 1980, 102, 239-246.
DOI: 10.1115/1.3183859
Google Scholar
[13]
L. Tang, R.G. Landers, S.N. Balakrishnan, Parallel Turning Process Parameter Optimization Based on a Novel Heuristic Approach. Trans. ASME J. Manu. Sci. Engng., 2008, 130: 031002-1 - 031002-12.
DOI: 10.1115/1.2823077
Google Scholar
[14]
E. Ozturk, E. Budak Modelling dynamics of parallel turning operation, Proceedings of 4 th International Conference on High Performance cutting, (2010).
Google Scholar
[15]
E. Budak, E. Ozturk, Dynamics and stability of parallel turning operations. Ann. CIRP, Mfg Technol., 2011, 60, 383-386.
DOI: 10.1016/j.cirp.2011.03.028
Google Scholar
[16]
M. Yatin, Ramanuj Vishwakarma, Sharma, D.K. and Senthilvelan, S. Design of attachment tool for Multi-tool turning, Proceedings of the International conference on Processing and Fabrication of Advanced Materials, 2012, Guwahati.
Google Scholar
[17]
A.K. Ghani, I.A. Choudhury, Husni, Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool, J. Mater. Process. Technol., 2002, 127, 17-22.
DOI: 10.1016/s0924-0136(02)00092-4
Google Scholar
[18]
D.E. Dimla Sr, P.M. Lister, On-line metal cutting tool condition monitoring I: Force and vibration analyses, Int. J. of Mach. Tools Mf., 2000, 40, 739-768.
DOI: 10.1016/s0890-6955(99)00084-x
Google Scholar
[19]
Ning Fang, P. Srinivasa Pai, S. Mosquea, The effect of built-up edge on the cutting vibrations in machining 2024-T351 aluminum alloy, Int. J. Adv. Manuf. Tech., 2010, 49, 63-71.
DOI: 10.1007/s00170-009-2394-z
Google Scholar