[1]
A. K. Jain, A. Ross, and S. Prabhakar, An Introduction to Biometric Recognition, IEEE Trans. on Circuits and Systems for Video Technology, vol. 14, no. 1, pp.4-20, (2004).
DOI: 10.1109/tcsvt.2003.818349
Google Scholar
[2]
R. M. Bolle, J. H. Connell, S. Pankanti, N. K. Ratha, and A. W. Senior, Guide to Biometrics. New York: Springer Verlag, (2004).
DOI: 10.1007/978-1-4757-4036-3
Google Scholar
[3]
X. Li, S. J. Maybank, S. Yan, D. Tao, and D. Xu, Gait components and their application to gender recognition, IEEE Trans. Syst., Man, Cybern. C, Applicat. Rev., vol. 38, no. 2, p.145–155, Mar. (2008).
DOI: 10.1109/tsmcc.2007.913886
Google Scholar
[4]
D. Tao, M. Song, X. Li, J. Shen, J. Sun, X. Wu, C. Faloutsos, and S. J. Maybank, Bayesian tensor approach for 3-D face modeling, IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 10, p.1397–1410, Oct. (2008).
DOI: 10.1109/tcsvt.2008.2002825
Google Scholar
[5]
D. Xu, S. Yan, D. Tao, L. Zhang, X. Li, and H. J. Zhang, Human gait recognition with matrix representation, IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 7, p.896–903, Jul. (2006).
DOI: 10.1109/tcsvt.2006.877418
Google Scholar
[6]
A. Cock, T. Willems, E. Witvrouw, J. Vanrenterghem, and D. Clercq, A functional foot type classification with cluster analysis based on plantar pressure distribution during jogging, Gait Posture, vol. 23, no. 3, p.339–347, (2006).
DOI: 10.1016/j.gaitpost.2005.04.011
Google Scholar
[7]
N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 1st ed. Cambridge, U.K.: Cambridge Univ., 2000, ch. 6, sec. 6. 1, p.93–112.
DOI: 10.1017/cbo9780511801389
Google Scholar
[8]
V.D. Ambeth Kumar Dr. M. Ramakrishnan, Legacy of Footprints Recognition- A Review, , International Journal of Computer Applications, Volume 35– No. 11, December (2011).
Google Scholar
[9]
B. Moghaddam and M. Yang, Learning gender with support faces, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, p.707–711, May (2002).
DOI: 10.1109/34.1000244
Google Scholar
[10]
Z. Sun, X. Yuan, G. Bebis, and S. Louis, Neural-network-based gender classification using genetic eigen-feature extraction, in Proc. IEEE Int. Joint Conf. Neural Network, vol. 3, May 2002, p.2433–2438.
DOI: 10.1109/ijcnn.2002.1007523
Google Scholar
[11]
T. Zhang, X. Li, D. Tao, and J. Yang, Multimodal biometrics using geometry preserving projections, Pattern Recognition, vol. 41, no. 3, p.805–813, (2008).
DOI: 10.1016/j.patcog.2007.06.035
Google Scholar
[12]
Robert B. Kennedy, Uniqueness of bare feet and its use as a possible means of identification, Elsevier science Ireland Ltd., (1996).
Google Scholar
[13]
L.M. Robbins, The individuality of human footprints, J. of. forensic science, vol-23, no-4, October (1978).
Google Scholar
[14]
K. Nakajima, Y. Mizukami, K. Tanaka, and T. Tamura, Foot-Based Personal Recognition, IEEE: Tr. On Biomedical Engineering, Vol. 47, No. 11, (2000).
Google Scholar
[15]
Dynamic-Footprint based Person Identification using Mat-type Pressure Sensor in-Woo Jungl, Zeungnam Bien', Sang-Wan Lee', Tomomasa Sato', IEEE (2003).
DOI: 10.1109/iembs.2003.1280533
Google Scholar
[16]
K. Nakajima, Y Mizukami, K. Tanaka, and T. Tamura, Footprint based personal recognition, IEEE Trans. on Biomedical Engineering, vol. 47, no. 11, pp.1534-1537, (2000).
DOI: 10.1109/10.880106
Google Scholar
[17]
J. -W. Jung, K. -H. Park, and Z. Bien, Unconstrained Person Recognition Method using Static and Dynamic Footprint, in Proc. of the 18th Hungarian-Korean Seminar, Budapest, Hungary, 2002, pp.129-137.
Google Scholar
[18]
J. -W. Jung, T. Sato, and Z. Bien, Dynamic Footprint-based Person Recognition Method using Hidden Markov Model and Neural Network, Int. Journal of Intelligent Systems, vol. 19, no. 11, pp.1127-1141, (2004).
DOI: 10.1002/int.20040
Google Scholar
[19]
V.D. Ambeth Kumar Dr. M. Ramakrishnan, Footprint Recognition using Modified Sequential Haar Energy Transform (MSHET), , JCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May (2010).
Google Scholar