[1]
K. H. Ho, S. T, Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture, 43 (2003) 1287-1300.
DOI: 10.1016/s0890-6955(03)00162-7
Google Scholar
[2]
S. Das, M. Klotz, F. Klocke, EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses, Journal of Materials Processing Technology, 142 (2003) 434-451.
DOI: 10.1016/s0924-0136(03)00624-1
Google Scholar
[3]
M. B. Schumacher, After 60 years of EDM the discharge process remains still disputed, Journal of Materials Processing Technology, 149 (2004) 376-381.
DOI: 10.1016/j.jmatprotec.2003.11.060
Google Scholar
[4]
S. K. Hargrove, D Ding, Determining cutting parameters in wire EDM based on workpiece surface temperature distribution, International Journal Adv. Manufacturing Technology, 34 (2007) 295-299.
DOI: 10.1007/s00170-006-0609-0
Google Scholar
[5]
N. B. Salah, F. Ghanem, K. Ben Atig, Numerical study of thermal aspects of electric discharge machining process, International Journal of Machine Tools & Manufacture, 46 (2006) 908-911.
DOI: 10.1016/j.ijmachtools.2005.04.022
Google Scholar
[6]
D. D. Bitonto, P. T. Eubank, M. R. Patel, M. A. Barrufet, Theoretical models of the electrical discharge machining process-I: a simple cathode erosion model, Journal of Applied Physics, 66 (1989) 4095-4103.
DOI: 10.1063/1.343994
Google Scholar
[7]
M. R. Patel, M. A. Barrufet, P. T. Eubank, D. D Bitonto, Theoretical models of the electrical discharge machining process-II: the anode erosion model, Journal of Applied Physics, 66 (1989) 4104-4111.
DOI: 10.1063/1.343995
Google Scholar
[8]
A. Erden, F. Arinc, and M. Kogmen, Comparison of mathematical models for electric discharge machining, Journal of Material Processing & Manufacturing Science, 4 (1995) 163-176.
Google Scholar
[9]
V. Yadav, V. K. Jain, P. M. Dixit, Thermal stresses due to electrical discharge machining, International Journal of Machine Tools & Manufacture, 42 (2008) 877-888.
DOI: 10.1016/s0890-6955(02)00029-9
Google Scholar
[10]
D. S. Kumar, Heat and Mass Transfer, tenth ed., S.K. Kataria & Sons, India, (2000).
Google Scholar
[11]
M. Kunieda, K. Yanatori, Study on debris movement in EDM gap, International Journal of Electrical Machining, 2 (1997) 43-49.
Google Scholar
[12]
Y.F. Luo, The dependence of inters space discharge transitivity upon the gap debris in precision electro-discharge machining, Journal of Materials Processing Technology, 68 (1997) 121-131.
DOI: 10.1016/s0924-0136(96)00019-2
Google Scholar
[13]
Y Tzeng, C Fu-chen, A simple approach for robust design of high-speed electrical-discharge machining technology, International Journal of Machine Tool & Manufacture, 43 (2003) 217-227.
DOI: 10.1016/s0890-6955(02)00261-4
Google Scholar
[14]
P. T. Eubank, M. R. Patel, Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model, Journal of Applied Physics, 73 (1993) 7900-7909.
DOI: 10.1063/1.353942
Google Scholar
[15]
R. Bhattacharya, V. K. Jain, P. S. Ghoshdastidar, Numerical Simulation of Thermal Erosion in EDM Process, Journal of the Institution of Engineers (India), Production Engineering Division, 77 (1996) 13-19.
Google Scholar
[16]
P. Shankar, V.K. Jain, T. Sundarajan, Analysis of spark profiles during EDM process, Machining Science Technology, 1 (1997) 195-217.
DOI: 10.1080/10940349708945647
Google Scholar
[17]
C Haron, C. Deros, A. Ginting, M. Fauziah, Investigation on the influence of machining parameters when machining tool steel using EDM, Journal of Materials Processing Technology, 116 (2001) 84-87.
DOI: 10.1016/s0924-0136(01)00846-9
Google Scholar
[18]
T. V. Rajan, P. C. Sharma, A. Sharma, Heat treatment principles and techniques, Prentice hall, India Pvt. Ltd., (2001).
Google Scholar