Finite Element Analysis of Material Removal Rate in Electrical Discharge Machining Process and its Comparison with Experiments

Article Preview

Abstract:

The non-convectional machining processes are those using thermal source of energy for the material removal. Among them Electrical discharge machining (EDM) or spark erosion machining is most important one. The important process parameters in this technique are discharge pulse on time, discharge pulse off time current and gap voltage. The values of these parameters significantly affect such machining outputs as material removal rate. In this paper, an axisymmetric thermo-physical finite element model for the simulation of single sparks machining during electrical discharge machining (EDM) process is exhibited. The model has been solved using ANSYS 11.0 software. A transient thermal analysis assuming a Gaussian distribution heat source with temperature-dependent material properties has been used to investigate the temperature distribution. Material removal rate was calculated for multi-discharge machining by taking into considerations the number of pulses. Comparison, analyzation of the theoretical result and experimental result by considering the same process parameters has been done, and the result is highly agreed between the experimental and theoretical value so the model is validated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 984-985)

Pages:

48-55

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. H. Ho, S. T, Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture, 43 (2003) 1287-1300.

DOI: 10.1016/s0890-6955(03)00162-7

Google Scholar

[2] S. Das, M. Klotz, F. Klocke, EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses, Journal of Materials Processing Technology, 142 (2003) 434-451.

DOI: 10.1016/s0924-0136(03)00624-1

Google Scholar

[3] M. B. Schumacher, After 60 years of EDM the discharge process remains still disputed, Journal of Materials Processing Technology, 149 (2004) 376-381.

DOI: 10.1016/j.jmatprotec.2003.11.060

Google Scholar

[4] S. K. Hargrove, D Ding, Determining cutting parameters in wire EDM based on workpiece surface temperature distribution, International Journal Adv. Manufacturing Technology, 34 (2007) 295-299.

DOI: 10.1007/s00170-006-0609-0

Google Scholar

[5] N. B. Salah, F. Ghanem, K. Ben Atig, Numerical study of thermal aspects of electric discharge machining process, International Journal of Machine Tools & Manufacture, 46 (2006) 908-911.

DOI: 10.1016/j.ijmachtools.2005.04.022

Google Scholar

[6] D. D. Bitonto, P. T. Eubank, M. R. Patel, M. A. Barrufet, Theoretical models of the electrical discharge machining process-I: a simple cathode erosion model, Journal of Applied Physics, 66 (1989) 4095-4103.

DOI: 10.1063/1.343994

Google Scholar

[7] M. R. Patel, M. A. Barrufet, P. T. Eubank, D. D Bitonto, Theoretical models of the electrical discharge machining process-II: the anode erosion model, Journal of Applied Physics, 66 (1989) 4104-4111.

DOI: 10.1063/1.343995

Google Scholar

[8] A. Erden, F. Arinc, and M. Kogmen, Comparison of mathematical models for electric discharge machining, Journal of Material Processing & Manufacturing Science, 4 (1995) 163-176.

Google Scholar

[9] V. Yadav, V. K. Jain, P. M. Dixit, Thermal stresses due to electrical discharge machining, International Journal of Machine Tools & Manufacture, 42 (2008) 877-888.

DOI: 10.1016/s0890-6955(02)00029-9

Google Scholar

[10] D. S. Kumar, Heat and Mass Transfer, tenth ed., S.K. Kataria & Sons, India, (2000).

Google Scholar

[11] M. Kunieda, K. Yanatori, Study on debris movement in EDM gap, International Journal of Electrical Machining, 2 (1997) 43-49.

Google Scholar

[12] Y.F. Luo, The dependence of inters space discharge transitivity upon the gap debris in precision electro-discharge machining, Journal of Materials Processing Technology, 68 (1997) 121-131.

DOI: 10.1016/s0924-0136(96)00019-2

Google Scholar

[13] Y Tzeng, C Fu-chen, A simple approach for robust design of high-speed electrical-discharge machining technology, International Journal of Machine Tool & Manufacture, 43 (2003) 217-227.

DOI: 10.1016/s0890-6955(02)00261-4

Google Scholar

[14] P. T. Eubank, M. R. Patel, Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model, Journal of Applied Physics, 73 (1993) 7900-7909.

DOI: 10.1063/1.353942

Google Scholar

[15] R. Bhattacharya, V. K. Jain, P. S. Ghoshdastidar, Numerical Simulation of Thermal Erosion in EDM Process, Journal of the Institution of Engineers (India), Production Engineering Division, 77 (1996) 13-19.

Google Scholar

[16] P. Shankar, V.K. Jain, T. Sundarajan, Analysis of spark profiles during EDM process, Machining Science Technology, 1 (1997) 195-217.

DOI: 10.1080/10940349708945647

Google Scholar

[17] C Haron, C. Deros, A. Ginting, M. Fauziah, Investigation on the influence of machining parameters when machining tool steel using EDM, Journal of Materials Processing Technology, 116 (2001) 84-87.

DOI: 10.1016/s0924-0136(01)00846-9

Google Scholar

[18] T. V. Rajan, P. C. Sharma, A. Sharma, Heat treatment principles and techniques, Prentice hall, India Pvt. Ltd., (2001).

Google Scholar