[1]
Mehta P.K. Greening of the concrete industry for sustainable development, concr. Int. 2002: 24(7); 23-7).
Google Scholar
[2]
Fly ash: A resource material for innovative building material- Indian perspective C. N. Jha& J. K. Prasad.
Google Scholar
[3]
Gorai P, Jana RK, Premchand, characteristics and utilization of copper slag, a review. Resource conserve. recy 2003; 39; 299-313.
DOI: 10.1016/s0921-3449(02)00171-4
Google Scholar
[4]
Global slag magazine, may2007.
Google Scholar
[5]
Mostafakhanzadi, alibehnood. mechanical properties of high strength concrete incorporating GGBS as coarse aggregate.
Google Scholar
[6]
GGBS waste as supplementary cementing material to concrete. W.A. Moura, J.P. Goncalves, M.B. Leirelima, 23 jan (2007).
Google Scholar
[7]
O. Pavez, F. Rojas, J. Palacios, A. Nazer. pozzolanic activity of copper slag. Conference on clean technologies for the mining industry, (2003).
Google Scholar
[8]
MobasherB, devaguptapu R, arino AM. Effect of copper slag on the hydration of blended cementitious mixtures. Proceedings of the ASCE materials engineering conference. Materials for the new millennium : 1996, P/1677/86.
Google Scholar
[9]
Tixier R, devagupta R, Mobasher B, the effect of copper slag on the hydration and mechanical properties of cementitious mixture. Cement concrete Res, 1997; 27 (10): 1569-80.
DOI: 10.1016/s0008-8846(97)00166-x
Google Scholar
[10]
Boncukcuoglu R, Kocakerim MM, Tosunoglu V. Utilization of industrial boron wastes cement production for the stabilization. Energy Education Science and Technology 1999; 3 (1): 48–54.
Google Scholar
[11]
Demirboga R, Sahin R, Bingol F, Gul R. The Usability of blast furnace slag in the production of high strength concrete. Fifth international symposium on utilization of high strength/high performance concrete. Norway: Sandefjord; 1999. p.1083–91.
DOI: 10.14359/1045
Google Scholar
[12]
Demirboga R, Orung I, Gul R. Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low density concretes. Cement and Concrete Research 2001; 31 (11): 1627–32.
DOI: 10.1016/s0008-8846(01)00615-9
Google Scholar
[13]
Ghafoori N, Bulholc J. Investigation of lignite-based bottom ash for structural concrete. Journal of Materials in Civil Engineering 1996; 8 (3): 128–37.
DOI: 10.1061/(asce)0899-1561(1996)8:3(128)
Google Scholar
[14]
Haque MN, Kayyali OA, Joynes BM. Blast furnace slag aggregate in the production of high performance concrete. American Concrete Institute 1995; SP 153: 911–30.
DOI: 10.14359/1104
Google Scholar
[15]
Kayali O, Haque MN, Zhu B. Drying shrinkage of fiber rienforced lightweight aggregate concrete containing fly ash. Cement and Concrete Research 1999; 29: 1835–40.
DOI: 10.1016/s0008-8846(99)00179-9
Google Scholar
[16]
Mehta PK. Durability critical issues for the future. Concrete International 1997; 19(7): 69–76.
Google Scholar
[17]
Alp. I, Devaki. H, Sungan. H, Utilization of floatation wastes of copper slag as a raw material in Cement production, journal of Hazardous materials, volume 159, issues 2-3, (2008).
DOI: 10.1016/j.jhazmat.2008.02.056
Google Scholar
[18]
Washington Almeida Moura, Jardel Pereira Gonçalvemonica Batista Leite Lima, April, (2007) Copper slag waste as a supplementary cementing material to concrete, Journal of Material Science, Volume 42, Number 7.
Google Scholar
[19]
Himaru Keisuke, Mizuguchi Hiroyuki, Hashimoto Chikanori, Ueda Takao, Fujita Kazuhiro, OumiMasaak, (2005).
Google Scholar
[20]
Report on Technical suitability of Copper slag for manufacture of cement for Sterlite Industries (India) Ltd., Tuticorin, submitted by National council for cement and building materials, New Delhi, July (2009).
Google Scholar