Both Spatial and Temporal Distortions Caused by Spatial Chirp in Vortex Femtosecond Pulse Beams

Article Preview

Abstract:

Spatial chirp will cause temporal width broadening and wave front aberration with the femtosecond pulse beam. So effectively controlling and utilizing the spatial chirp has great significance. In this manuscript, the properties of the spatial chirp are theoretically investigated. An experimental setup which can easily control the spatial chirp of the femtosecond laser pulse beam and generate vortex femtosecond pulse beam with different spatial chirp parameters is proposed. The relationships between the spatial chirp and the temporal and spatial properties including the cross section intensity distributions and the temporal width and chirp of the femtosecond pulse beams are obtained. Both theoretical and experimental results indicate that as the spatial chirp parameter becomes larger, both the temporal and spatial pulse beam widths are broadening and the wave front aberration also becomes larger quickly. Moreover, the temporal chirp is also becoming larger when the spatial chirp parameter becomes larger. The spatial chirp properties of vortex and Gaussian femtosecond pulse beams are similar with each other.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 986-987)

Pages:

1763-1766

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. A. Porras. Ultrashort pulsed Gaussian light beams [J], Phys. Rev. E, 1998 58(1): 1086-1093.

DOI: 10.1103/physreve.58.1086

Google Scholar

[2] T. Tanabe, F. Kannari, F. Korte, J. Koch, B. Chichkov. Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile [J], Appl. Opt., 2005 44(6): 1092-1098.

DOI: 10.1364/ao.44.001092

Google Scholar

[3] C. Dorrer, I. A. Walmsley. Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses [J], Opt. Lett., 2002 27(21): 1947-(1949).

DOI: 10.1364/ol.27.001947

Google Scholar

[4] R. L. Fork, O. E. Martinez, J. P. Gordon. Negative dispersion using pair of prisms [J], Opt. Lett., 1984 9(5): 150-152.

Google Scholar

[5] O. E. Martinez, J. P. Gordon, R. L. Fork. Negative group-velocity dispersion using refraction [J], J. Opt. Soc. Am. A, 1984 1(10): 1003–1006.

DOI: 10.1364/josaa.1.001003

Google Scholar

[6] M. M. Wefers, K. A. Nelson, A. M. Weiner. Multidimensional shaping of ultrafast optical waveforms [J], Opt. Lett., 1996 21(10): 746-748.

DOI: 10.1364/ol.21.000746

Google Scholar

[7] J. Paye, A. Migus. Space–time Wigner functions and their application to the analysis of a pulse shaper [J], J. Opt. Soc. Am. B, 1995 12(12): 1480-1490.

DOI: 10.1364/josab.12.001480

Google Scholar

[8] B. J. Sussman, R. Lausten, A. Stolow. Focusing of light following a 4f pulse shaper: Considerations for quantum control [J], Phys. Rev. A, 2008 77: 043416(1-11).

DOI: 10.1103/physreva.77.043416

Google Scholar

[9] S. Akturk, X. Gu, P. Bowlan, R. Trebino. Spatio-temporal couplings in ultrashort laser pulses [J], J. Opt., 2010 12: 093001 (1-20).

DOI: 10.1088/2040-8978/12/9/093001

Google Scholar

[10] F. Frei, A. Galler, T. Feurer. Space-time coupling in femtosecond pulse shaping and its effects on coherent control [J], J. Chem. Phys., 2009 130: 034302(1-11).

DOI: 10.1063/1.3058478

Google Scholar

[11] X. Gu, S. Akturk, R. Trebino. Spatial chirp in ultrafast optics [J], Opt. Commun., 2004 242: 599–604.

DOI: 10.1016/j.optcom.2004.09.004

Google Scholar

[12] P. Gabolde, D. Lee, S. Akturk, R. Trebino. Describing first-order spatio-temporal distortions in ultrashort pulses using normalized parameters [J] Opt. Express, 2007 15(1): 242-251.

DOI: 10.1364/oe.15.000242

Google Scholar

[13] J. Liao, X. Wang, W. Sun, Y. Tan, Y. Nie, J. Qi, H. Jia, J. Liu, J. Yang, J. Tan, X. Li. Analysis of Femtosecond Optical Vortex Beam Generated by Direct Wave-Front Modulation [J], Opt. Eng., 2013 52(10): 106102.

DOI: 10.1117/1.oe.52.10.106102

Google Scholar