[1]
Zhou Yan, Tan Yinglian, Liu Biao, et al. Overview on prediction research of wind power [J]. Electric Drive Automation, 2013, 35(1): 11-14.
Google Scholar
[2]
Fan Gaofeng, Wang Weisheng, Liu Chun, et al. Wind power prediction based on artificial neural network [J]. Proceedings of the CSEE, 2008, 28 (34): 118- 123.
Google Scholar
[3]
Lang Binbin, Mu Gang, Yan Gangui, et al. Research on wind speed vs output power characteristic curve of wind power generator interconnected with power grid [J]. Power System Technology, 2008, 32(12): 70~74.
DOI: 10.1109/powercon.2014.6993838
Google Scholar
[4]
Wind turbine generator systems-Part 12: Wind turbine power performance testing [S]. International Electro technical Commission, (2005).
DOI: 10.3403/01448941
Google Scholar
[5]
Gamesa Eolica S.A. Gamesa G52/G58-850 kW Technical Files [R]. Spain: Gamesa Eolica S.A., (2001).
Google Scholar
[6]
Li Yuan. Method research on wind turbine optimal selection based on wind resource characteristics [D]. North China Electric Power University(Beijing), (2008).
Google Scholar
[7]
Liu Hao, Liu Yibing, Xin Weidong, et al. Wind turbine power performance based on the operation data [J]. Power System and Clean Energy, 2009, 25(7): 53-56.
Google Scholar
[8]
Li Mengyan, Liu Xingjie, Mi Zengqiang. Research on modeling method of wind turbine power curve [J]. Yunnan Electric Power, 2012, 40(3): 1-5.
DOI: 10.1109/iccasm.2010.5619415
Google Scholar
[9]
KRZYZAK A, WALK H. A distribution-free theory of nonparametric regression [C]/New York, NY, USA: Springer-Verlag, 2002: 70- 80.
Google Scholar
[10]
Wang Caixia, Lu Zongxiang, Qiao Ying, et al. Short-term wind power forecast based on non-parametric regression model [J]. Automation of Electric Power Systems, 2010, 34(16): 78-82, 91.
Google Scholar
[11]
Zhou Songlin, Mao Meiqin, Su Jianhui. Short-term forecasting of wind power and non-parametric confidence interval estimation [J]. Proceedings of the CSEE, 2011, 31(25): 10-16.
Google Scholar
[12]
OLIVE D J. Prediction intervals for regression models [J]. Computational Statistics & Data Analysis, 2007, 51 (6) : 3115-3122.
DOI: 10.1016/j.csda.2006.02.006
Google Scholar