[1]
Morkoc H, Strite S, Gao G B, et al. Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398.
DOI: 10.1063/1.358463
Google Scholar
[2]
Yan Guoguo, Sun Guosheng, Wu Hailei, et al. Study on extended defects in 4H- SiC epitaxial layers [J]. Semiconductor Optoelectronics, 2011, 32(3): 359-362.
Google Scholar
[3]
Petrov G M, Giuliani J L. Model of a two-stage rf plasma reactor for SiC deposition[J]. Journal of Applied Physics, 2001, 90(2): 619-636.
DOI: 10.1063/1.1373701
Google Scholar
[4]
Danielsson Ö, Henry A, Janzén E. Growth rate predictions of chemical vapor deposited silicon carbide epitaxial layers[J]. Journal of crystal growth, 2002, 243(1): 170-184.
DOI: 10.1016/s0022-0248(02)01486-0
Google Scholar
[5]
Keikha A J, Sheikholeslami T F, Behzadmehr A. Analysis of SiC deposition rate in a tubular hot-wall reactor with polymeric source using the DoE method[J]. Journal of electronic materials, 2013, 42(6): 931-938. 334-336.
DOI: 10.1007/s11664-012-2463-1
Google Scholar
[6]
Allendorf M D, Kee R J. A model of silicon carbide chemical vapor deposition[J]. Journal of the Electrochemical Society, 1991, 138(3): 841-852.
DOI: 10.1149/1.2085688
Google Scholar
[7]
Danielsson Ö, Henry A, Janzén E. Growth rate predictions of chemical vapor deposited silicon carbide epitaxial layers[J]. Journal of crystal growth, 2002, 243(1): 170-184.
DOI: 10.1016/s0022-0248(02)01486-0
Google Scholar
[8]
M. A. Kuczmarski, Modeling of chemical vapor deposition reactors for Silicon carbide and diamond growth[D], Ph.D. thesis, Dept. Chem. Eng., Case Western Reserve University, USA, (1992).
Google Scholar
[9]
Nishizawa S, Pons M. Numerical modeling of silicon carbide epitaxy in a horizontal hot-wall reactor[J]. Journal of crystal growth, 2007, 303(1): 334-336.
DOI: 10.1016/j.jcrysgro.2006.12.018
Google Scholar