Parameter Estimation for Wiener Systems with Preload Nonlinearities

Article Preview

Abstract:

This paper proposes a recursive least squares algorithm for Wiener systems. We use a switching function to turn the modelof the nonlinear Wiener systems into an identification model, then propose a recursive least squares identification algorithm toestimate all the unknown parameters of the systems. Finally, an example is provided to show the effectiveness of the proposed algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

1460-1463

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Ding, Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling, Applied Mathematical Modelling, doi: 10. 1016/j. apm. 2012. 04. 039.

DOI: 10.1016/j.apm.2012.04.039

Google Scholar

[2] F. Ding, Separable gradient estimation algorithm for Hammerstein systems based on decompositions. The 2012 American Control Conference, June 27-29, 2012, Montr´eal, Canada.

DOI: 10.1109/acc.2012.6315354

Google Scholar

[3] D.Q. Wang, F. Ding, Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems, Computers and Mathematics with Applications 56 (12) (2008) 3157-3164.

DOI: 10.1016/j.camwa.2008.07.015

Google Scholar

[4] D.Q. Wang, F. Ding, Least squares based and gradient based iterative identification for Wiener nonlinear systems, Signal Processing 91 (5) (2011) 1182-1189.

DOI: 10.1016/j.sigpro.2010.11.004

Google Scholar

[5] D.Q. Wang, Y.Y. Chu, F. Ding, Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems, Computers & Mathematics with Applications 59 (9) (2010) 3092-3098.

DOI: 10.1016/j.camwa.2010.02.030

Google Scholar

[6] F. Ding, Y. Shi, T. Chen, Auxiliary model based least-squares identification methods for Hammerstein output-error systems, Systems & Control Letters 56 (5) (2007) 373-380.

DOI: 10.1016/j.sysconle.2006.10.026

Google Scholar

[7] J. Chen, X.P. Wang, R.F. Ding, Gradient based estimation algorithm for Hammerstein systems with saturation and deadzone nonlinearities, Applied Mathematical Modelling 36 (1) (2012) 238-243.

DOI: 10.1016/j.apm.2011.05.049

Google Scholar

[8] Y. Liu, E.W. Bai, Iterative identification of Hammerstein systems, Automatica 43 (2) (2007) 346-354.

DOI: 10.1016/j.automatica.2006.09.004

Google Scholar

[9] J. Vor, os, Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities, Systems & Control Letters 56 (2) (2007) 99-105.

DOI: 10.1016/j.sysconle.2006.08.001

Google Scholar

[10] G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control, Prentice-Hall, Englewood Cliffs, NJ, (1984).

Google Scholar

[11] F. Ding, T. Chen, Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica 40 (10) (2004) 1739-1748.

DOI: 10.1016/j.automatica.2004.05.001

Google Scholar