[1]
Liu Tianliang, Luo Limin. Segmentation –Based Stereo Matching Algorithm with Variable Support and Disparity Estimation. ACTA OPTICA SINICA, vol. 29, No. 4: (2009).
DOI: 10.3788/aos20092904.1002
Google Scholar
[2]
Wu Chun-Hong, Fu Guo-Liang. A Stereo Matching Based on K-means Segmentation and Neighborhood Constraints Relaxation. Chinese Journal of Computers, vol. 34, No. 4, (2011).
DOI: 10.3724/sp.j.1016.2011.00755
Google Scholar
[3]
L. De-Maeztu, A. Villanueva, and R. Cabeza. Stereo matching using gradient similarity and locally adaptive support-weight. Pattern Recognition Letters. vol. 32, No. 13, pp.1643-1651, (2011).
DOI: 10.1016/j.patrec.2011.06.027
Google Scholar
[4]
Q. Yang, L. Wang, and N. Ahuja. A constant-space belief propagation algorithm for stereo matching. CVPR, (2010).
Google Scholar
[5]
C. Cassisa. Local vs global energy minimization methods: Application To Stereo Matching. PIC, (2010).
DOI: 10.1109/pic.2010.5687902
Google Scholar
[6]
F. Besse, C. Rother, A. Fitzgibbon, and J. Kautz. PMBP: PatchMatch belief propagation for correspondence field estimation. BMVC, (2012).
DOI: 10.5244/c.26.132
Google Scholar
[7]
N. Barzigar, A. Roozgard, S. Cheng, and P. Verma. SCoBeP: Dense image registration using sparse coding and belief propagation. JVIS, (2012).
DOI: 10.5430/ijdi.v2n1p54
Google Scholar
[8]
C. Pham and J. Jeon. Domain transformation-based efficient cost aggregation for local stereo matching. IEEE Transactions on Circuits and Systems for Video Technology, (2012).
DOI: 10.1109/tcsvt.2012.2223794
Google Scholar
[9]
X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang. Segment-tree based cost aggregation for stereo matching. CVPR, (2013).
DOI: 10.1109/cvpr.2013.47
Google Scholar
[10]
Kuk-Jin Yoon. Adaptive Support-Weight Approach for Correspondence Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 4, (2006).
DOI: 10.1109/tpami.2006.70
Google Scholar
[11]
Zhou Xiu-Zhi, Wen Gong-jian, Wang Run-Sheng. Fast Stereo Matching Using Adaptive Window. Chinese Journal of Computers. vol. 29, No. 3, (2006).
Google Scholar
[12]
Guo X, Wang L, Zeng J, Zhang X. VQ Codebook Design Algorithm Based on Copula Estimation of Distribution Algorithm. 2011 First International Conference on Robot, Vision and Signal Processing, pp.21-23, (2011).
DOI: 10.1109/rvsp.2011.35
Google Scholar
[13]
Salinas-Gutiérrez R, Hernández-Aguirre A, et al. D-vine EDA: a New Estimation of Distribution Algorithm Based on Regular Vines. Proceedings of the 2010 Conference on Genetic and Evolutionary Computation, pp.359-365, (2010).
DOI: 10.1145/1830483.1830550
Google Scholar
[14]
Zhou Shu-De, Sun Zeng-Qi. A Survey on Estimation of Distribution Algorithms. ACTA AUTOMATICA SINICA. vol. 33, No. 2, (2007).
Google Scholar
[15]
Neslehova J. On Rank Correlation Measures for Non-continuous Random Variables. Journal of Multivariate Analysis, No. 98, pp.544-567, (2007).
DOI: 10.1016/j.jmva.2005.11.007
Google Scholar
[16]
Kolesarova A, Mordelova J. Quasi-copulas and copulas on a discrete scale. Soft Computing, No. 10, pp.459-501, (2006).
DOI: 10.1007/s00500-005-0524-6
Google Scholar
[17]
Cai Dun-Hu, Yi Xu-Ming. The Selection of Wavelet Basis in Image Denoising. Journal of MatheMatics, vol. 25, No. 2, (2005).
Google Scholar
[18]
Deng, Na, and Chang-sen Jiang. Selection of optimal wavelet basis for signal denoising. Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on IEEE, (2012).
DOI: 10.1109/fskd.2012.6234211
Google Scholar