Point Rupture Solutions of a Singular Quasilinear Elliptic Equation Arise from Non-Newtonian Fluids

Article Preview

Abstract:

We consider the quasilinear elliptic equation in a finite ball in , where Motivated by the thin film equations, a solution is said to be a point rupture solution if for some , and for any . Our main result is a sufficient condition on for the existence of radial point rupture solutions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

1829-1832

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. K. Martinson and K. B. Pavlov. Unsteady shear flows of a conducting fluid with a rheological power law, Magnitnaya Gidrodinamika, 2(1971), 50-58.

Google Scholar

[2] Esteban, J. R. and Vazquez, J. L. On the equation of turbulent filteration in one-dimensional porous media, Nonlinear Anal., 10(1982), 1303-1325.

Google Scholar

[3] G. Astrita and G. Marrucci. Principles of non-Newtonian fluid mechanics, McGraw-Hill, New York, (1974).

Google Scholar

[4] J.A. King. Two generalisations of the thin film equation, Math. Comput. Modell., 34(7-8)(2001), 737-756.

Google Scholar

[5] A.B. Tayler. Mathematical Models in Applied Mechanics, Clarendon, Oxford, (1986).

Google Scholar

[6] Zuodong Yang. Existence of positive entire solutions for singular and non-singular quasi-linear elliptic equation, J Comp. Appl. Math., 197(2)(2006), 355-364.

DOI: 10.1016/j.cam.2005.08.027

Google Scholar

[7] J. Ai, K.S. Chou, J. Wei. Self-similar solutions for the anisotropic affine curvature shortening problem, Calc. Var. Partial Differen. Equat., 13(2001), 311-337.

DOI: 10.1007/s005260000075

Google Scholar

[8] Zongming Guo and Xingxiao Li. Solutions with isolated point ruptures for a semilinear elliptic equation in with a non-Lipschitz nonlinearity, Appl. Math. Lett., 5(2004), 519-526.

DOI: 10.1016/s0893-9659(04)90120-6

Google Scholar

[9] Ke Li, Hongxia Guo and Zongming Guo. Positive singular rupture solutions to a semilinear elliptic equation, Appl. Math. Lett., 18(2005), 1177-1183.

DOI: 10.1016/j.aml.2005.02.006

Google Scholar

[10] Zongming Guo. Some existence and multiplicity results for a class of quasilinear elliptic equations. Nonlinear Anal. 18 (1992), 957-971.

DOI: 10.1016/0362-546x(92)90132-x

Google Scholar

[11] Zongming Guo and Zuodong Yang. Structure of positive solutions for a class of quasilinear elliptic equations when a parameter is small. Chin. Ann. Math., 19A(1998), 385-392.

Google Scholar

[12] Zhoujin Cui and Zuodong Yang. Positive singular rupture solutions to a class for quasilinear elliptic equations, Appl. Math. Comput., 188(2007), 399-405.

DOI: 10.1016/j.amc.2006.09.135

Google Scholar

[13] Huiqiang Jiang, Attou Miloua. Point rupture solutions of a singular elliptic equation, Electron. J. Differ. Eq., Vol. 2013(2013), 1-8.

Google Scholar

[14] Gidas B, Ni W M, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 68(1979), 209-243.

DOI: 10.1007/bf01221125

Google Scholar

[15] R. Kichenassamy and J. Smoller. On the existence of the radial solutions of quasilinear elliptic equations, Nonlinearity, 3(1990), 677-694.

DOI: 10.1088/0951-7715/3/3/008

Google Scholar