[1]
W.M.P. van der Aalst, M.H. Schonenberg, and M. song. Time Prediction Based on Process Mining. Information Systems, 36(2): 450-475, (2011).
DOI: 10.1016/j.is.2010.09.001
Google Scholar
[2]
B.F. van Dongen, R.A. Crooy, W.M.P. van der Aalst, Cycle time prediction: when will this case finally be finished?, in: R Meersman, Z. Tari (Eds. ), Proceedings of the 16th International Conference on Cooperative Information Systems, CoopIS 2008, OTM 2008. Part I, Lecture Notes in Computer Science, vol. 5331, Springer-Verlag, Berlin, 2008, p.319.
DOI: 10.1007/978-3-540-88871-0_22
Google Scholar
[3]
H. Schonenberg, B. Weber, B.F. van Dongen, W.M.P. van der Aalst, Supporting flexible processes through recommendations based on history, in: M. Dumas, M. Reichert, M.C. Shan (Eds. ), International Conference on Business Process Management (BPM 2008), Lecture Notes in Computer Science, vol. 5240, Springer-Verlag, Berlin, 2008, p.51.
DOI: 10.1007/978-3-540-85758-7_7
Google Scholar
[4]
IEEE Task Force on Process Mining, Process Mining Manifesto, Proc. Business Process Mining Workshops, Lecture Notes in Business Information Processing, Springer, (2012).
DOI: 10.1007/978-3-319-17482-2_5
Google Scholar
[5]
W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, C.W. Günther, Process mining: a two-step approach to balance between underfitting and overfitting, Software and Systems Modeling 9 (1) (2010) 87–111.
DOI: 10.1007/s10270-008-0106-z
Google Scholar
[6]
Jim Z.C. Lai, Tsung-Jen Huang, Yi-Ching Liaw, A fast k-means clustering algorithm using cluster center displacement, J.Z.C. Lai et al. / Pattern Recognition 42 (2009) 2551 – 2556.
DOI: 10.1016/j.patcog.2009.02.014
Google Scholar
[7]
S.N. den Hertog, Case prediction in BPM systems: research to the predictability of the remaining time of individual cases, Master's Thesis, Eindhoven University of Technology, Eindhoven, (2008).
Google Scholar
[8]
M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede, Process- aware Information Systems: Bridging People and Software Through Process Technology, Wiley & Sons, (2005).
DOI: 10.1002/0471741442
Google Scholar
[9]
Luengo, Daniela and Sepulveda, Marcos, Applying clustering in process mining to find different versions of a business process that change over time, Lecture Notes in Business Information Processing, v 99 LNBIP, PART 1, pp.153-158, (2012).
DOI: 10.1007/978-3-642-28108-2_15
Google Scholar