[1]
He Y H, Hui C W. A binary coding genetic algorithm for multi-purpose process scheduling: A case study [J], Chemical Engineering Science, 2010, 65(16): 4816-4828.
DOI: 10.1016/j.ces.2010.05.032
Google Scholar
[2]
Shi H X. Solution to 0/1 knapsack problem based on improved ant colony algorithm [C], in: International Conference on Information Acquisition, 2006, 1062-1066.
DOI: 10.1109/icia.2006.305887
Google Scholar
[3]
Coelho L S. An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications [J], Reliability Engineering & System Safety, 2009, 94(4): 830-837.
DOI: 10.1016/j.ress.2008.09.001
Google Scholar
[4]
Onwubolu G, Davendra D. Scheduling flow shops using differential evolution algorithm [J], European Journal of Operational Research, 2006, 171(2): 674-692.
DOI: 10.1016/j.ejor.2004.08.043
Google Scholar
[5]
Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: Harmony search [J], Simulation, 2001, 76(2): 60-68.
DOI: 10.1177/003754970107600201
Google Scholar
[6]
Lee K S, Geem Z W. A new structural optimization method based on the harmony search algorithm [J], Computers and Structures, 2004, 82(9/10): 781-798.
DOI: 10.1016/j.compstruc.2004.01.002
Google Scholar
[7]
Honggang XIA, Dongling CHEN, Liqun GAO. Modified Harmony Search Algorithm for Power Economic Load Dispatch [J], Journal of Computational Information Systems, 2013, 9(5): 2103-2110.
Google Scholar
[8]
Sharma K D, Chatterjee A, Rakshit A. Design of a Hybrid Stable Adaptive Fuzzy Controller Employing Lyapunov Theory and Harmony Search Algorithm [J], IEEE Transactions on Control Systems Technology, 2010, PP(99): 1-8.
DOI: 10.1109/tcst.2009.2039138
Google Scholar
[9]
Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for solving optimization problems [J], Applied Mathematics and Computation, 2007, 188(2): 1567–1579.
DOI: 10.1016/j.amc.2006.11.033
Google Scholar
[10]
Chia-Ming Wang, Yin-Fu Huang. Self-adaptive harmony search algorithm for optimization. Expert Systems with Applications, 2010, 37(4): 2826-2837.
DOI: 10.1016/j.eswa.2009.09.008
Google Scholar
[11]
Omran M G H, Mahdavi M. Global-best harmony search [J], Applied Mathematics and Computation, 2008, 198(2): 643-656.
DOI: 10.1016/j.amc.2007.09.004
Google Scholar
[12]
Zou D X, Gao L Q, Wu J H, Li S. Novel global harmony search algorithm for unconstrained problems [J], Neurocomputing, 2010, 73(16-18): 3308-3318.
DOI: 10.1016/j.neucom.2010.07.010
Google Scholar
[13]
Storn, R., Price, K., Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, Berkeley, USA: International Computer Science Institute, (1995).
Google Scholar