3D Graphical Representation of Protein Sequences Based on Conformational Parameters of Amino Acids

Article Preview

Abstract:

Based on the helix and-sheet and the-turn conformational parameters, and and , of the 20 amino acids, we propose a new 3D graphical representation of protein sequence without circuit or degeneracy, which may reflect the innate structure of the protein sequence. Then the numerical characterizations of protein graphs, the leading eigenvalues of the L/L matrices associated with the graphical curves for protein sequences, was utilized as descriptors to analyze the similarity/dissimilarity of the nine ND5 protein sequences.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

3599-3604

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Hamori, J. Ruskin, A novel method of representation of nucleotide series especially suited for long DNA sequences, J. Biol. Chem., 258: 1318-1327, (1983).

DOI: 10.1016/s0021-9258(18)33196-x

Google Scholar

[2] E. Hamori, Novel DNA sequence representations, Nature, 314: 585-586, (1985).

Google Scholar

[3] M.A. Gates, A simple way to look at DNA, J. Theor. Biol., 119: 319-328, (1986).

Google Scholar

[4] A. Nandy, A new graphical representation and analysis of DNA sequence structure: I. Methodology and application to globin genes, Curr. Sci., 66: 309-314, (1994).

Google Scholar

[5] A. Nandy, P. Nandy, Graphical analysis of DNA sequence structure: II. Relative abundances of nucleotides in DNAs, gene evolution and duplication, Curr. Sci., 68: 75-85, (1995).

Google Scholar

[6] M. Randic, M. Vra_cko, A. Nandy, S.C. Basak, On 3-D graphical representation of DNA primary sequences and their numerical characterization, J. Chem. Inf. Comput. Sci., 40: 1235-1244, (2000).

DOI: 10.1021/ci000034q

Google Scholar

[7] M. Randic, J. Zupan, M. Novic, On 3-D graphical representation of proteomics maps and their numerical characterization, J. Chem. Inf. Comput. Sci., 41: 1339-1344, (2001).

DOI: 10.1021/ci0001684

Google Scholar

[8] X.F. Guo, A. Nandy, Numerical characterization of DNA sequences in a 2-D graphical representation scheme of low degeneracy, Chem. Phys. Lett., 369: 361-366, (2003).

DOI: 10.1016/s0009-2614(02)02029-8

Google Scholar

[9] B. Liao, T.M. Wang, New 2D graphical representation of DNA sequences, J. Comput. Chem., 25: 1364-1368, (2004).

DOI: 10.1002/jcc.20060

Google Scholar

[10] B. Liao, A 2D graphical representation of DNA sequence, Chem. Phys. Lett., 401: 196-199, (2005).

Google Scholar

[11] Y.H. Yao, X.Y. Nan, T.M. Wang, A new 2D graphical representationł Classification curve and the analysis of similarity/dissimilarity of DNA sequences, J. Mol. Struct.: Theochem, 764: 101-108, (2006).

DOI: 10.1016/j.theochem.2006.02.007

Google Scholar

[12] Z.H. Qi, T.R. Fan, PN-curve: A 3D graphical representation of DNA sequences and their numerical characterization, Chem. Phys. Lett., 442: 434-440, (2007).

DOI: 10.1016/j.cplett.2007.06.029

Google Scholar

[13] Z.H. Qi, X.Q. Qi, Numerical characterization of DNA sequences based on digital signal method, Comput. Biol. Medic, 39: 388-391, (2009).

DOI: 10.1016/j.compbiomed.2009.01.009

Google Scholar

[14] J.F. Yu, X. Sun, J.H. Wang, TN curve: A novel 3D graphical representation of DNA sequence based on trinucleotides and its applications, J. Theor. Biol., 261: 459-468, (2009).

DOI: 10.1016/j.jtbi.2009.08.005

Google Scholar

[15] G.S. Xie, Z.X. Mo, Three 3D graphical representations of DNA primary sequences based on the classifications of DNA bases and their applications, J. Theor. Biol., 269: 123–130, (2011).

DOI: 10.1016/j.jtbi.2010.10.018

Google Scholar

[16] L.P. Yang, X.D. Zhang, H.G. Zhu, Alignment free comparison: Similarity distribution between the DNA primary sequences based on the shortest absent word, J. Theor. Biol., 295: 125-131, (2012).

DOI: 10.1016/j.jtbi.2011.11.021

Google Scholar

[17] M. Randic, 2-D Graphical representation of proteins based on virtual genetic code, SAR QSAR Environ. Res., 15: 147-157, (2004).

DOI: 10.1080/10629360410001697744

Google Scholar

[18] M. Randic, J. Zupan, Highly compact 2-D graphical representation of DNA sequences, SAR QSAR Environ. Res., 15: 191-205, (2004).

DOI: 10.1080/10629360410001697753

Google Scholar

[19] M. Randic, J. Zupan, A.T. Balaban, Unique graphical representation of protein sequences based on nucleotide triplet codons, Chem. Phys. Lett., 397: 247-252, (2004).

DOI: 10.1016/j.cplett.2004.08.118

Google Scholar

[20] M. Randic, D. Butina, J. Zupan, Novel 2-D graphical representation of proteins, Chem. Phys. Lett., 419: 528-532, (2006).

DOI: 10.1016/j.cplett.2005.11.091

Google Scholar

[21] M. Randic, A.T. Balaban, M. Novic, A. Zaloznik, T. Pisanski, A novel graphical representation of proteins, Period. Biolog., 107: 403-414, (2005).

Google Scholar

[22] M. Randic, M. Novic, D. Vikic-Topic, D. Plavsic, Novel numerical and graphical representation of DNA sequences and proteins, SAR QSAR Environ. Res., 17: 583-595, (2006).

DOI: 10.1080/10629360601033549

Google Scholar

[23] M. Randic, J. Zupan, D. Vikic-Topic, On representation of proteins by star-like graphs, J. Mol. Graph. Model., 26: 290-305, (2007).

Google Scholar

[24] F.L. Bai, T.M. Wang, On graphical and numerical representation of protein sequences, J. Biomol. Str. Dyn., 23: 537-545, (2006).

Google Scholar

[25] B. Liao, J.W. Luo, R.F. Li, W. Zhu, Novel method for analyzing proteome, Int. J. Quant. Chem., 107: 1295-1300, (2007).

DOI: 10.1002/qua.21287

Google Scholar

[26] W. Zhu, B. Liao, J.W. Luo, R.F. Li, Numerical characterization and similarity analysis of neurocan gene, MATCH Commun. Math. Comput. Chem., 57: 143-155, (2007).

Google Scholar

[27] Y.H. Yao, Q. Dai, C. Li, P.A. He, X.Y. Nan, Y.Z. Zhang, Analysis of similarity/dissimilarity of protein sequences, Proteins, 73: 864-871, (2008).

DOI: 10.1002/prot.22110

Google Scholar

[28] J. Wen, Y.Y. Zhang, A 2D graphical representation of protein sequence and its numerical characterization, Chem. Phys. Lett., 476: 281-286, (2009).

DOI: 10.1016/j.cplett.2009.06.017

Google Scholar

[29] H.H. Bai, C. Li, H. Agula, Jirimutu, J. Wang, L.L. Xing, Cp-curve, a Novel 3-D Graphical Representation of Proteins, ICCMSE2007, 963: 57-60, (2007).

DOI: 10.1063/1.2836145

Google Scholar

[30] C. Li, X.Q. Yu, L. Yang, X.Q. Zheng, Z.F. Wang, 3-D maps and coupling numbers for protein sequences, Physica A, 388: 1967-1972, (2009).

Google Scholar

[31] P.A. He, J.Z. Wei, Y.H. Yao, Z.X. Tie, A novel graphical representation of proteins and its application, Physica A, 391: 93-99, (2012).

DOI: 10.1016/j.physa.2011.08.015

Google Scholar

[32] H.J. Yu, D.H. Huang, Novel 20-D descriptors of protein sequences and it's applications in similarity analysis, Chem. Phys. Lett., 531: 261-266, (2012).

DOI: 10.1016/j.cplett.2012.02.030

Google Scholar

[33] P. Y. Chou, G. D. Fasman, Structural and functional role of leucine residues in proteins, J. Mol. Biol., 74: 263-281, (1973).

DOI: 10.1016/0022-2836(73)90372-0

Google Scholar

[34] P. Y. Chou, G. D. Fasman, Conformational parameters for amino acids in helical, -sheet, and random coil regions calculated from proteins, Biochemistry, 13: 211-222, (1974).

DOI: 10.1021/bi00699a001

Google Scholar

[35] P. Y. Chou, G. D. Fasman, Prediction of Protein Conformation, Biochemistry, 13: 222-245, (1974).

DOI: 10.1021/bi00699a002

Google Scholar

[36] M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, H. Zhang, An information- based sequence distance and its application to whole mitochondrial genome phylogeny, Bioinformatics, 17: 149-154, (2001).

DOI: 10.1093/bioinformatics/17.2.149

Google Scholar

[37] H.H. Otu, K. Sayood, A new sequence distance measure for phylogenetic tree construction, Bioinformatics, 19: 2122-2130, (2003).

DOI: 10.1093/bioinformatics/btg295

Google Scholar

[38] V. Makarenkov, F. Lapointe, A weighted least-squares approach for inferring phylogenies from incomplete distance matrices, Bioinformatics, 20: 2113-2121, (2004).

DOI: 10.1093/bioinformatics/bth211

Google Scholar