[1]
E. Hamori, J. Ruskin, A novel method of representation of nucleotide series especially suited for long DNA sequences, J. Biol. Chem., 258: 1318-1327, (1983).
DOI: 10.1016/s0021-9258(18)33196-x
Google Scholar
[2]
E. Hamori, Novel DNA sequence representations, Nature, 314: 585-586, (1985).
Google Scholar
[3]
M.A. Gates, A simple way to look at DNA, J. Theor. Biol., 119: 319-328, (1986).
Google Scholar
[4]
A. Nandy, A new graphical representation and analysis of DNA sequence structure: I. Methodology and application to globin genes, Curr. Sci., 66: 309-314, (1994).
Google Scholar
[5]
A. Nandy, P. Nandy, Graphical analysis of DNA sequence structure: II. Relative abundances of nucleotides in DNAs, gene evolution and duplication, Curr. Sci., 68: 75-85, (1995).
Google Scholar
[6]
M. Randic, M. Vra_cko, A. Nandy, S.C. Basak, On 3-D graphical representation of DNA primary sequences and their numerical characterization, J. Chem. Inf. Comput. Sci., 40: 1235-1244, (2000).
DOI: 10.1021/ci000034q
Google Scholar
[7]
M. Randic, J. Zupan, M. Novic, On 3-D graphical representation of proteomics maps and their numerical characterization, J. Chem. Inf. Comput. Sci., 41: 1339-1344, (2001).
DOI: 10.1021/ci0001684
Google Scholar
[8]
X.F. Guo, A. Nandy, Numerical characterization of DNA sequences in a 2-D graphical representation scheme of low degeneracy, Chem. Phys. Lett., 369: 361-366, (2003).
DOI: 10.1016/s0009-2614(02)02029-8
Google Scholar
[9]
B. Liao, T.M. Wang, New 2D graphical representation of DNA sequences, J. Comput. Chem., 25: 1364-1368, (2004).
DOI: 10.1002/jcc.20060
Google Scholar
[10]
B. Liao, A 2D graphical representation of DNA sequence, Chem. Phys. Lett., 401: 196-199, (2005).
Google Scholar
[11]
Y.H. Yao, X.Y. Nan, T.M. Wang, A new 2D graphical representationł Classification curve and the analysis of similarity/dissimilarity of DNA sequences, J. Mol. Struct.: Theochem, 764: 101-108, (2006).
DOI: 10.1016/j.theochem.2006.02.007
Google Scholar
[12]
Z.H. Qi, T.R. Fan, PN-curve: A 3D graphical representation of DNA sequences and their numerical characterization, Chem. Phys. Lett., 442: 434-440, (2007).
DOI: 10.1016/j.cplett.2007.06.029
Google Scholar
[13]
Z.H. Qi, X.Q. Qi, Numerical characterization of DNA sequences based on digital signal method, Comput. Biol. Medic, 39: 388-391, (2009).
DOI: 10.1016/j.compbiomed.2009.01.009
Google Scholar
[14]
J.F. Yu, X. Sun, J.H. Wang, TN curve: A novel 3D graphical representation of DNA sequence based on trinucleotides and its applications, J. Theor. Biol., 261: 459-468, (2009).
DOI: 10.1016/j.jtbi.2009.08.005
Google Scholar
[15]
G.S. Xie, Z.X. Mo, Three 3D graphical representations of DNA primary sequences based on the classifications of DNA bases and their applications, J. Theor. Biol., 269: 123–130, (2011).
DOI: 10.1016/j.jtbi.2010.10.018
Google Scholar
[16]
L.P. Yang, X.D. Zhang, H.G. Zhu, Alignment free comparison: Similarity distribution between the DNA primary sequences based on the shortest absent word, J. Theor. Biol., 295: 125-131, (2012).
DOI: 10.1016/j.jtbi.2011.11.021
Google Scholar
[17]
M. Randic, 2-D Graphical representation of proteins based on virtual genetic code, SAR QSAR Environ. Res., 15: 147-157, (2004).
DOI: 10.1080/10629360410001697744
Google Scholar
[18]
M. Randic, J. Zupan, Highly compact 2-D graphical representation of DNA sequences, SAR QSAR Environ. Res., 15: 191-205, (2004).
DOI: 10.1080/10629360410001697753
Google Scholar
[19]
M. Randic, J. Zupan, A.T. Balaban, Unique graphical representation of protein sequences based on nucleotide triplet codons, Chem. Phys. Lett., 397: 247-252, (2004).
DOI: 10.1016/j.cplett.2004.08.118
Google Scholar
[20]
M. Randic, D. Butina, J. Zupan, Novel 2-D graphical representation of proteins, Chem. Phys. Lett., 419: 528-532, (2006).
DOI: 10.1016/j.cplett.2005.11.091
Google Scholar
[21]
M. Randic, A.T. Balaban, M. Novic, A. Zaloznik, T. Pisanski, A novel graphical representation of proteins, Period. Biolog., 107: 403-414, (2005).
Google Scholar
[22]
M. Randic, M. Novic, D. Vikic-Topic, D. Plavsic, Novel numerical and graphical representation of DNA sequences and proteins, SAR QSAR Environ. Res., 17: 583-595, (2006).
DOI: 10.1080/10629360601033549
Google Scholar
[23]
M. Randic, J. Zupan, D. Vikic-Topic, On representation of proteins by star-like graphs, J. Mol. Graph. Model., 26: 290-305, (2007).
Google Scholar
[24]
F.L. Bai, T.M. Wang, On graphical and numerical representation of protein sequences, J. Biomol. Str. Dyn., 23: 537-545, (2006).
Google Scholar
[25]
B. Liao, J.W. Luo, R.F. Li, W. Zhu, Novel method for analyzing proteome, Int. J. Quant. Chem., 107: 1295-1300, (2007).
DOI: 10.1002/qua.21287
Google Scholar
[26]
W. Zhu, B. Liao, J.W. Luo, R.F. Li, Numerical characterization and similarity analysis of neurocan gene, MATCH Commun. Math. Comput. Chem., 57: 143-155, (2007).
Google Scholar
[27]
Y.H. Yao, Q. Dai, C. Li, P.A. He, X.Y. Nan, Y.Z. Zhang, Analysis of similarity/dissimilarity of protein sequences, Proteins, 73: 864-871, (2008).
DOI: 10.1002/prot.22110
Google Scholar
[28]
J. Wen, Y.Y. Zhang, A 2D graphical representation of protein sequence and its numerical characterization, Chem. Phys. Lett., 476: 281-286, (2009).
DOI: 10.1016/j.cplett.2009.06.017
Google Scholar
[29]
H.H. Bai, C. Li, H. Agula, Jirimutu, J. Wang, L.L. Xing, Cp-curve, a Novel 3-D Graphical Representation of Proteins, ICCMSE2007, 963: 57-60, (2007).
DOI: 10.1063/1.2836145
Google Scholar
[30]
C. Li, X.Q. Yu, L. Yang, X.Q. Zheng, Z.F. Wang, 3-D maps and coupling numbers for protein sequences, Physica A, 388: 1967-1972, (2009).
Google Scholar
[31]
P.A. He, J.Z. Wei, Y.H. Yao, Z.X. Tie, A novel graphical representation of proteins and its application, Physica A, 391: 93-99, (2012).
DOI: 10.1016/j.physa.2011.08.015
Google Scholar
[32]
H.J. Yu, D.H. Huang, Novel 20-D descriptors of protein sequences and it's applications in similarity analysis, Chem. Phys. Lett., 531: 261-266, (2012).
DOI: 10.1016/j.cplett.2012.02.030
Google Scholar
[33]
P. Y. Chou, G. D. Fasman, Structural and functional role of leucine residues in proteins, J. Mol. Biol., 74: 263-281, (1973).
DOI: 10.1016/0022-2836(73)90372-0
Google Scholar
[34]
P. Y. Chou, G. D. Fasman, Conformational parameters for amino acids in helical, -sheet, and random coil regions calculated from proteins, Biochemistry, 13: 211-222, (1974).
DOI: 10.1021/bi00699a001
Google Scholar
[35]
P. Y. Chou, G. D. Fasman, Prediction of Protein Conformation, Biochemistry, 13: 222-245, (1974).
DOI: 10.1021/bi00699a002
Google Scholar
[36]
M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, H. Zhang, An information- based sequence distance and its application to whole mitochondrial genome phylogeny, Bioinformatics, 17: 149-154, (2001).
DOI: 10.1093/bioinformatics/17.2.149
Google Scholar
[37]
H.H. Otu, K. Sayood, A new sequence distance measure for phylogenetic tree construction, Bioinformatics, 19: 2122-2130, (2003).
DOI: 10.1093/bioinformatics/btg295
Google Scholar
[38]
V. Makarenkov, F. Lapointe, A weighted least-squares approach for inferring phylogenies from incomplete distance matrices, Bioinformatics, 20: 2113-2121, (2004).
DOI: 10.1093/bioinformatics/bth211
Google Scholar