[1]
L. Patino, H. Benhadda, N. Nefzi, et al. Abnormal behavior detection in video protection systems. International Workshop on Behaviour Analysis and Video Understanding (ICVS 2011), Sophia Antipolis : France, (2011).
Google Scholar
[2]
O. Otto, J. L. Gornall, G. Stober, et al. High-speed video-based tracking of optically trapped colloids. Journal of Optics, 13(2011)4, 40-51.
DOI: 10.1088/2040-8978/13/4/044011
Google Scholar
[3]
Q. Luo, X. Kong, G. Zeng, et al. Human action detection via boosted local motion histograms. Machine Vision and Applications, 21(2010)3, 377-389.
DOI: 10.1007/s00138-008-0168-5
Google Scholar
[4]
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, et al. Object detection with discriminatively trained part-based models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(2010)9, 1627-1645.
DOI: 10.1109/tpami.2009.167
Google Scholar
[5]
H. Zhou, Y. Yuan, C. Shi, Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 113(2009)3, 345-352.
DOI: 10.1016/j.cviu.2008.08.006
Google Scholar
[6]
C. R. Wren, A. Azarbayejani, T. Darrell, et al. Pfinder: Real-time tracking of the human body. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(1997)7, 780-785.
DOI: 10.1109/34.598236
Google Scholar
[7]
A. M. McIvor. Background subtraction techniques. Proc. of Image and Vision Computing, 1(2000)3, 155-163.
Google Scholar
[8]
Z. Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, 2004, 2, 28-31.
DOI: 10.1109/icpr.2004.1333992
Google Scholar
[9]
M. Piccardi. Background subtraction techniques: a review. Systems, Man and Cybernetics, 2004 IEEE International Conference on, 2004, 4, 3099-3104.
DOI: 10.1109/icsmc.2004.1400815
Google Scholar
[10]
Y. L. Tian, M. Lu, A. Hampapur. Robust and efficient foreground analysis for real-time video surveillance. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005, 1, 1182-1187.
DOI: 10.1109/cvpr.2005.304
Google Scholar
[11]
A. Elgammal, D. Harwood, L. Davis. Non-parametric model for background subtraction. Computer Vision—ECCV 2000, 2000, 751-767.
DOI: 10.1007/3-540-45053-x_48
Google Scholar
[12]
A. Elgammal, R. Duraiswami, D. Harwood, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE, 90(2002)7, 1151-1163.
DOI: 10.1109/jproc.2002.801448
Google Scholar
[13]
L. Maddalena, A. Petrosino. A self-organizing approach to background subtraction for visual surveillance applications. Image Processing, IEEE Transactions on, 17(2008)7, 1168-1177.
DOI: 10.1109/tip.2008.924285
Google Scholar
[14]
O. Javed, K. Shafique, M. Shah. A hierarchical approach to robust background subtraction using color and gradient information. Motion and Video Computing, 2002. Proceedings. Workshop on, 2002, 22-27.
DOI: 10.1109/motion.2002.1182209
Google Scholar
[15]
O. Barnich, M. Van Droogenbroeck. ViBe: a powerful random technique to estimate the background in video sequences. Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, Taipei, 2009, 945-948.
DOI: 10.1109/icassp.2009.4959741
Google Scholar
[16]
O. Barnich, M. Van Droogenbroeck. ViBe: A universal background subtraction algorithm for video sequences. Image Processing, IEEE Transactions on, 20(2011)6, 1709-1724.
DOI: 10.1109/tip.2010.2101613
Google Scholar