Video Sequences Foreground Enhancement Using Hidden Markov Model

Article Preview

Abstract:

Foreground detection is an important part in video surveillance system. The detection results will significantly affect the performance of tracking, abnormal behavior analysis and other following procedures. Many algorithms have been proposed to improve the detection performance. However, these algorithms simply focus on one single frame, ignoring the relationship among the detection results of one target in successive frames. This paper presents a novel foreground enhancement algorithm using Hidden Markov Model (HMM). In a video sequence, one target in successive frames usually has similar shape, size, et al. With this property, the target can be modeled by HMM and enhanced using the result of its prior frame. The observation of HMM is obtained by ViBe. The enhancement result is then estimated by using Maximum A Posteriori (MAP). Experimental results show that compared with the state-of-art algorithm, the proposed method can enhance foreground detection effectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

3872-3876

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Patino, H. Benhadda, N. Nefzi, et al. Abnormal behavior detection in video protection systems. International Workshop on Behaviour Analysis and Video Understanding (ICVS 2011), Sophia Antipolis : France, (2011).

Google Scholar

[2] O. Otto, J. L. Gornall, G. Stober, et al. High-speed video-based tracking of optically trapped colloids. Journal of Optics, 13(2011)4, 40-51.

DOI: 10.1088/2040-8978/13/4/044011

Google Scholar

[3] Q. Luo, X. Kong, G. Zeng, et al. Human action detection via boosted local motion histograms. Machine Vision and Applications, 21(2010)3, 377-389.

DOI: 10.1007/s00138-008-0168-5

Google Scholar

[4] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, et al. Object detection with discriminatively trained part-based models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(2010)9, 1627-1645.

DOI: 10.1109/tpami.2009.167

Google Scholar

[5] H. Zhou, Y. Yuan, C. Shi, Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 113(2009)3, 345-352.

DOI: 10.1016/j.cviu.2008.08.006

Google Scholar

[6] C. R. Wren, A. Azarbayejani, T. Darrell, et al. Pfinder: Real-time tracking of the human body. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(1997)7, 780-785.

DOI: 10.1109/34.598236

Google Scholar

[7] A. M. McIvor. Background subtraction techniques. Proc. of Image and Vision Computing, 1(2000)3, 155-163.

Google Scholar

[8] Z. Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, 2004, 2, 28-31.

DOI: 10.1109/icpr.2004.1333992

Google Scholar

[9] M. Piccardi. Background subtraction techniques: a review. Systems, Man and Cybernetics, 2004 IEEE International Conference on, 2004, 4, 3099-3104.

DOI: 10.1109/icsmc.2004.1400815

Google Scholar

[10] Y. L. Tian, M. Lu, A. Hampapur. Robust and efficient foreground analysis for real-time video surveillance. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005, 1, 1182-1187.

DOI: 10.1109/cvpr.2005.304

Google Scholar

[11] A. Elgammal, D. Harwood, L. Davis. Non-parametric model for background subtraction. Computer Vision—ECCV 2000, 2000, 751-767.

DOI: 10.1007/3-540-45053-x_48

Google Scholar

[12] A. Elgammal, R. Duraiswami, D. Harwood, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE, 90(2002)7, 1151-1163.

DOI: 10.1109/jproc.2002.801448

Google Scholar

[13] L. Maddalena, A. Petrosino. A self-organizing approach to background subtraction for visual surveillance applications. Image Processing, IEEE Transactions on, 17(2008)7, 1168-1177.

DOI: 10.1109/tip.2008.924285

Google Scholar

[14] O. Javed, K. Shafique, M. Shah. A hierarchical approach to robust background subtraction using color and gradient information. Motion and Video Computing, 2002. Proceedings. Workshop on, 2002, 22-27.

DOI: 10.1109/motion.2002.1182209

Google Scholar

[15] O. Barnich, M. Van Droogenbroeck. ViBe: a powerful random technique to estimate the background in video sequences. Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, Taipei, 2009, 945-948.

DOI: 10.1109/icassp.2009.4959741

Google Scholar

[16] O. Barnich, M. Van Droogenbroeck. ViBe: A universal background subtraction algorithm for video sequences. Image Processing, IEEE Transactions on, 20(2011)6, 1709-1724.

DOI: 10.1109/tip.2010.2101613

Google Scholar