[1]
Cheng, L. C., & Sun, L. M. Exploring consumer adoption of new services by analyzing the behavior of 3G subscribers: An empirical case study: Electronic Commerce Research and Applications, 11(2), 89-100. (2012).
DOI: 10.1016/j.elerap.2011.06.005
Google Scholar
[2]
Hohwald, H., Frias-Martinez, E., & Oliver, N. User modeling for telecommunication applications: Experiences and practical implications: User Modeling, Adaptation, and Personalization, 327-338. (2010).
DOI: 10.1007/978-3-642-13470-8_30
Google Scholar
[3]
Stroele, V., Zimbrão, G., & Souza, J. M. Modeling, mining and analysis of multi-relational scientific social network: Journal of Universal Computer Science, 28(8). (2012).
Google Scholar
[4]
Qi, J., & Li, Y. A novel and convenient variable selection method for choosing effective input variables for telecommunication customer churn prediction model: In Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on (pp.3217-3222.
DOI: 10.1109/icsmc.2009.5346166
Google Scholar
[5]
Peng, J., Quan, J., & Zhang, S. Mobile phone customer retention strategies and Chinese e-commerce: Electronic Commerce Research and Applications, 12(5), 321-327. (2013).
DOI: 10.1016/j.elerap.2013.05.002
Google Scholar
[6]
Long, X., Yin, W., An, L., Ni, H., Huang, L., Luo, Q., & Chen, Y: Churn Analysis of Online Social Network Users Using Data Mining Techniques: In Proceedings of the International Multi-Conference of Engineers and Computer Scientists (Vol. 1). (2012).
Google Scholar
[7]
Datta, P., Masand, B., Mani, D. R., & Li, B: Automated cellular modeling and prediction on a large scale: Artificial Intelligence Review, 14(6), 485-502 (2001).
Google Scholar
[8]
Bin, L., Peiji, S., & Juan, L: Customer churn prediction based on the decision tree in personal handyphone system service: Service Systems and Service Management, 2007 International Conference on (pp.1-5) IEEE. (2007, June).
DOI: 10.1109/icsssm.2007.4280145
Google Scholar
[9]
Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A. A., & Joshi, A: Social ties and their relevance to churn in mobile telecom networks. In Proceedings of the 11th international conference on extending database technology: Advances in database technology (pp.668-677.
DOI: 10.1145/1353343.1353424
Google Scholar
[10]
Zhu, T., Wang, B., Wu, B., & Zhu, C: Role defining using behavior-based clustering in telecommunication network: Expert Systems with Applications, 38(4), 3902-3908 (2011).
DOI: 10.1016/j.eswa.2010.09.051
Google Scholar
[11]
Richter, Y., Yom-Tov, E., & Slonim, N: Predicting Customer Churn in Mobile Networks through Analysis of Social Groups. In SDM (pp.732-741). (2010, April).
DOI: 10.1137/1.9781611972801.64
Google Scholar
[12]
Gomez Rodriguez, M., Leskovec, J., & Krause, A: Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp.1019-1028). ACM (2010, July).
DOI: 10.1145/1835804.1835933
Google Scholar
[13]
Kempe, D., Kleinberg, J., & Tardos, É: Influential nodes in a diffusion model for social networks. In Automata, languages and programming (pp.1127-1138). Springer Berlin Heidelberg. (2005).
DOI: 10.1007/11523468_91
Google Scholar
[14]
Phadke, C., Uzunalioglu, H., Mendiratta, V. B., Kushnir, D., & Doran, D. Prediction of Subscriber Churn Using Social Network Analysis. Bell Labs Technical Journal, 17(4), 63-75. (2013).
DOI: 10.1002/bltj.21575
Google Scholar