A New Framework for Churners’ Influence Analysis Using Call Data Records

Article Preview

Abstract:

Predicting customer churn is of paramount importance in telecommunication companies. The taxonomy of churn reports that, not only individual constraints but also social factors can create users’ propensity to churn. This study uses real world call data records (CDR) to extract the social relationships among mobile phone users and build a multi relational social network, where the influence of users diffuses. The research is conducted to propose a framework that enhances the actionable value of social influence of predicted churners and to examine the parameters that control the churn information diffusion in the telecommunication networks.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

4200-4204

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cheng, L. C., & Sun, L. M. Exploring consumer adoption of new services by analyzing the behavior of 3G subscribers: An empirical case study: Electronic Commerce Research and Applications, 11(2), 89-100. (2012).

DOI: 10.1016/j.elerap.2011.06.005

Google Scholar

[2] Hohwald, H., Frias-Martinez, E., & Oliver, N. User modeling for telecommunication applications: Experiences and practical implications: User Modeling, Adaptation, and Personalization, 327-338. (2010).

DOI: 10.1007/978-3-642-13470-8_30

Google Scholar

[3] Stroele, V., Zimbrão, G., & Souza, J. M. Modeling, mining and analysis of multi-relational scientific social network: Journal of Universal Computer Science, 28(8). (2012).

Google Scholar

[4] Qi, J., & Li, Y. A novel and convenient variable selection method for choosing effective input variables for telecommunication customer churn prediction model: In Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on (pp.3217-3222.

DOI: 10.1109/icsmc.2009.5346166

Google Scholar

[5] Peng, J., Quan, J., & Zhang, S. Mobile phone customer retention strategies and Chinese e-commerce: Electronic Commerce Research and Applications, 12(5), 321-327. (2013).

DOI: 10.1016/j.elerap.2013.05.002

Google Scholar

[6] Long, X., Yin, W., An, L., Ni, H., Huang, L., Luo, Q., & Chen, Y: Churn Analysis of Online Social Network Users Using Data Mining Techniques: In Proceedings of the International Multi-Conference of Engineers and Computer Scientists (Vol. 1). (2012).

Google Scholar

[7] Datta, P., Masand, B., Mani, D. R., & Li, B: Automated cellular modeling and prediction on a large scale: Artificial Intelligence Review, 14(6), 485-502 (2001).

Google Scholar

[8] Bin, L., Peiji, S., & Juan, L: Customer churn prediction based on the decision tree in personal handyphone system service: Service Systems and Service Management, 2007 International Conference on (pp.1-5) IEEE. (2007, June).

DOI: 10.1109/icsssm.2007.4280145

Google Scholar

[9] Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A. A., & Joshi, A: Social ties and their relevance to churn in mobile telecom networks. In Proceedings of the 11th international conference on extending database technology: Advances in database technology (pp.668-677.

DOI: 10.1145/1353343.1353424

Google Scholar

[10] Zhu, T., Wang, B., Wu, B., & Zhu, C: Role defining using behavior-based clustering in telecommunication network:  Expert Systems with Applications, 38(4), 3902-3908 (2011).

DOI: 10.1016/j.eswa.2010.09.051

Google Scholar

[11] Richter, Y., Yom-Tov, E., & Slonim, N: Predicting Customer Churn in Mobile Networks through Analysis of Social Groups. In SDM (pp.732-741). (2010, April).

DOI: 10.1137/1.9781611972801.64

Google Scholar

[12] Gomez Rodriguez, M., Leskovec, J., & Krause, A: Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp.1019-1028). ACM (2010, July).

DOI: 10.1145/1835804.1835933

Google Scholar

[13] Kempe, D., Kleinberg, J., & Tardos, É: Influential nodes in a diffusion model for social networks. In Automata, languages and programming (pp.1127-1138). Springer Berlin Heidelberg. (2005).

DOI: 10.1007/11523468_91

Google Scholar

[14] Phadke, C., Uzunalioglu, H., Mendiratta, V. B., Kushnir, D., & Doran, D. Prediction of Subscriber Churn Using Social Network Analysis. Bell Labs Technical Journal, 17(4), 63-75. (2013).

DOI: 10.1002/bltj.21575

Google Scholar