A Network Information Filtering Method Based on Node Energy Transfer

Article Preview

Abstract:

Network information filtering can be projected into link prediction in bipartite network to alleviate information overload. The paper discovers that node transfers redundant recommendation energy in network and gives bad effect on information filtering efficiency. Gathering node’s overlapping degree by factorizing negative matrix, redundant energy is reduced with overlapping degree and initial recommendation energy. The method endows information filtering system with dynamic recommendation prediction, the empirical results indicates the method can enhance information filtering performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

4400-4404

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] LY Lü, M. Medo, C H Yeung, et al. Recommender systems[J]. Physics Reports, 2012, 519(1): 1–49.

Google Scholar

[2] M. L LIU,T.C. Liu , W. P WU. Recommendation Algorithm Based on Web Consumer Preference Prediction[J]. Library and information service. 2012, 56(4): 120-124.

Google Scholar

[3] X.F. Yuan, J.H. Lee, S. J. Kim, Y.H. Kim . Toward a user-oriented recommendation system for real estate websites. Information systems. 2013, 38: 231-243.

DOI: 10.1016/j.is.2012.08.004

Google Scholar

[4] T Zhou, J Ren, M Medo, Y C. Zhang Bipartite network projection and personal recommendation [J] . Phys Rev E, 2007, 76(4) : 046115.

DOI: 10.1103/physreve.76.046115

Google Scholar

[5] T, Zhou L L Jiang, R Q, Su Y C Zhang. Effect of initial configuration on network-based recommendation [J]. Europhysics Letters, 2008, 81(5): 58004.

DOI: 10.1209/0295-5075/81/58004

Google Scholar

[6] T Zhou, R Q Su, R R Liu et al. Accurate and diverse recommendations via eliminating redundant correlations[J]. New Journal of Physics 11 (2009) 123008.

DOI: 10.1088/1367-2630/11/12/123008

Google Scholar

[7] J G Liu, T Zhou, B H Wang, et al . Highly accurate recommendation algorithm based on high-order similarities[J]. Physica A , 2010, 389: 881-886.

Google Scholar

[8] J G Liu, B H Wang, Q Guo. Improved collaborative filtering algorithm via information transformation [J]. International Journal of Modern Physics C , 2009, 20(2): 285-293.

DOI: 10.1142/s0129183109013613

Google Scholar

[9] C J Zhang, A Zeng. Behavior patterns of online users and the effect on information filtering[J]. Physica A 391 (2012) 1822-1830.

DOI: 10.1016/j.physa.2011.09.038

Google Scholar

[10] Z K , Zhang T Zhou, Y C Zhang. Tag-aware recommender systems: A state-of the art survey [J]. Journal of Computer Science and Technology 26, 2011 : 767-777.

DOI: 10.1007/s11390-011-0176-1

Google Scholar

[11] J Ren, T Zhou , Y C Zhang. Information filtering via self-consistent refinement[J]. EPL, 2008, 82(5): 58007-1-58007-5.

DOI: 10.1209/0295-5075/82/58007

Google Scholar

[12] Zhang CH. X., Zhang Z K, Yu L, Liu CH., Liu H, Yan X. Y. Information filtering via collaborative user clustering modeling[J]. Physica A: Statistical Mechanics and its Applications, 2014, 396(15): 195–203.

DOI: 10.1016/j.physa.2013.11.024

Google Scholar

[13] Q Guo., W. J. Song, L. HOU Y. L. ZHANG, J. G LIU. Effect of the time window on the heat-conduction information filtering model[J]. Physica A: Statistical Mechanics and its Applications, 2014, 401: 15-21.

DOI: 10.1016/j.physa.2014.01.012

Google Scholar

[14] D D Lee, H S Seung. Learning the parts of objects by non-negative matrix factorization [J]. Nature, 1999, 401( 6755 ): 788-791.

DOI: 10.1038/44565

Google Scholar